首页> 外文OA文献 >Project schedule optimisation utilising genetic algorithms
【2h】

Project schedule optimisation utilising genetic algorithms

机译:利用遗传算法优化项目进度表

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis extends the body of research into the application of Genetic Algorithms to the Project Scheduling Problem (PSP). A thorough literature review is conducted in this area as well as in the application of other similar meta-heuristics. The review extends previous similar reviews to include PSP utilizing the Design Structure Matrix (DSM), as well as incorporating recent developments. There is a need within industry for optimisation algorithms that can assist in the identification of optimal schedules when presented with a network that can present a number of possible alternatives. The optimisation requirement may be subtle only performing slight resource levelling or more profound by selecting an optimal mode of execution for a number of activities or evaluating a number of alternative strategies. This research proposes a unique, efficient algorithm using adaptation based on the fitness improvement over successive generations. The algorithm is tested initially using a MATLAB based implementation to solve instances of the travelling salesman problem (TSP). The algorithm is then further developed both within MATLAB and Microsoft Project Visual Basic to optimise both known versions of the Resource Constrained Project Scheduling Problems as well as investigating newly defined variants of the problem class.
机译:本文将研究范围扩展到遗传算法在项目计划问题(PSP)中的应用。在这一领域以及其他类似的元启发式方法的应用中,进行了详尽的文献综述。该审查扩展了以前的类似审查,包括利用设计结构矩阵(DSM)的PSP,以及合并了最新的开发成果。在行业内需要一种优化算法,当与可以呈现许多可能的选择的网络一起呈现时,该算法可以帮助识别最佳时间表。通过为多种活动选择最佳执行模式或评估多种替代策略,优化要求可能仅会执行微不足道的资源平衡,从而变得更加微妙。这项研究提出了一种独特的,有效的算法,该算法使用了基于连续世代适应性改进的自适应算法。最初使用基于MATLAB的实现来测试该算法,以解决旅行商问题(TSP)的实例。然后在MATLAB和Microsoft Project Visual Basic中进一步开发该算法,以优化资源受约束的项目计划问题的已知版本以及研究问题类的新定义变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号