首页> 外文OA文献 >Control loop measurement based isolation of faults and disturbances in process plants
【2h】

Control loop measurement based isolation of faults and disturbances in process plants

机译:基于控制回路测量的过程工厂中的故障和干扰隔离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis focuses on the development of data-driven automated techniques to enhance performance assessment methods. These techniques include process control loop status monitoring, fault localisation in a number of interacting control loops and the detection and isolation of multiple oscillations in a multi-loop situation. Not only do they make use of controlled variables, but they also make use of controller outputs, indicator readings, set-points and controller settings. The idea behind loop status is that knowledge of the current behaviour of a loop is important when assessing MVC-based performance, because of the assumptions that are made in the assessment. Current behaviour is defined in terms of the kind of deterministic trend that is present in the loop at the time of assessment. When the status is other than steady, MVC-based approaches are inappropriate. Either the assessment must be delayed until steady conditions are attained or other methods must be applied. When the status is other than steady, knowledge of current behaviour can help identify the possible cause. One way of doing this is to derive another statistic, the overall loop performance index (OLPI), from loop status. The thesis describes a novel fault localisation technique, which analyses this statistic to find the source of a plant-wide disturbance, when a number of interacting control loops are perturbed by a single dominant disturbance/fault. Although the technique can isolate a single dominant oscillation, it is not able to isolate the sources of multiple, dominant oscillations. To do this, a novel technique is proposed that is based on the application of spectral independent component analysis (ICA). Spectral independent component analysis (spectral ICA) is based on the analysis of spectra derived via a discrete Fourier transform from time domain process data. The analysis is able to extract dominant spectrum-like independent components each of which has a narrow-bank peak that captures the behaviour of one of the oscillation sources. It is shown that the extraction of independent components with single spectral peaks can be guaranteed by an ICA algorithm that maximises the kurtosis of the independent components (ICs). This is a significant advantage over spectral principle component analysis (PCA), because multiple spectral peaks could be present in the extracted principle components (PCs), and the interpretation of detection and isolation of oscillation disturbances based on spectral PCs is not straightforward. The novel spectral ICA method is applied to a simulated data set and to real plant data obtained from an industrial chemical plant. Results demonstrate its ability to detect and isolate multiple dominant oscillations in different frequency ranges.
机译:本文重点研究数据驱动的自动化技术,以增强性能评估方法。这些技术包括过程控制回路状态监视,多个交互控制回路中的故障定位以及在多回路情况下多个振荡的检测和隔离。它们不仅利用受控变量,而且利用控制器输出,指示器读数,设定点和控制器设置。循环状态背后的想法是,在评估基于MVC的性能时,了解循环的当前行为很重要,因为评估中会做出一些假设。当前行为是根据评估时循环中存在的确定性趋势的种类来定义的。当状态不是稳定状态时,基于MVC的方法是不合适的。要么必须将评估推迟到达到稳定状态,要么必须采用其他方法。当状态不是稳定状态时,了解当前行为可以帮助识别可能的原因。一种实现方法是从循环状态中得出另一种统计信息,即整体循环性能指数(OLPI)。本文描述了一种新颖的故障定位技术,该技术可以在单个显性干扰/故障对许多相互作用的控制回路产生干扰时,对该统计数据进行分析,以找到整个工厂范围的干扰源。尽管该技术可以隔离单个主振荡,但它无法隔离多个主振荡的来源。为此,提出了一种基于光谱独立成分分析(ICA)应用的新颖技术。光谱独立成分分析(spectral ICA)是基于对光谱的分析,该光谱是通过离散傅里叶变换从时域过程数据中得出的。该分析能够提取类似于频谱的主要独立成分,每个成分都有一个窄库峰,可捕获一个振荡源的行为。结果表明,通过最大化独立分量(IC)峰度的ICA算法,可以确保提取具有单个光谱峰的独立分量。与频谱主成分分析(PCA)相比,这是一个显着的优势,因为提取的主成分(PC)中可能存在多个频谱峰,并且基于频谱PC来检测和隔离振动干扰的方法并不简单。新颖的光谱ICA方法应用于模拟数据集和从工业化工厂获得的真实工厂数据。结果表明,它具有检测和隔离不同频率范围内多个主振荡的能力。

著录项

  • 作者

    Xia Chunming;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号