首页> 外文OA文献 >Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes
【2h】

Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes

机译:InGaas高速光电二极管,InGaas / Inalas雪崩光电二极管和新型alassb雪崩光电二极管的设计和表征

摘要

Avalanche photodiodes (APDs) can provide higher sensitivity, when the noise is dominated by electronic noise, than conventional p-i-n photodiodes due to its internal gain achieved via the impact ionisation process. High speed and high sensitivity photodetectors operating at the wavelength of 1.55 m for optical communication have been intensely research due to the ever increasing internet traffic, particularly in the long-haul communication systems. In this dissertation high speed InGaAs p-i-n photodiodes, InGaAs/InAlAs separate absorption and multiplication (SAM) APDs are designed and characterised. The waveguide InGaAs photodiode exhibits a maximum -3 dB bandwidth of 26.5 GHz and external quantum efficiency of 38.4% giving a bandwidth-efficiency product of 10.2 GHz, which is higher than 7.14 GHz obtained from conventional vertically illuminated diodes fabricated from the same wafer. Building on the high speed InGaAs waveguide diodes, the InGaAs/InAlAs APDs were fabricated. We demonstrated low dark currents of ~50 nA at 0.9Vbd (Vbd is the breakdown voltage), low excess noise factor k  0.2 (k is the effective ratio of ionisation coefficients ratio in excess noise model) and wide bandwidth up to 40 GHz at low gains. Our APDs also achieve higher signal amplification than the best 40 Gb/s APD reported, confirming the suitability of our APDs for use in the 40 Gb/s optical communication systems. The signal enhancement of up to 24 dB was achieved at 35 GHz. While the InGaAs/InAlAs APDs may be suitable for 40 Gb/s operation, the avalanche gain is limited due to their limited gain bandwidth products. Hence novel wide bandgap AlAsSb avalanche regions were characterised for next generation high speed SAM APDs. The temperature dependence of dark current and avalanche gain were investigated using AlAsSb p-i-n diodes with avalanche region widths of 80 and 230 nm. Extremely low temperature coefficients of breakdown voltage of 0.95 and 1.47 mV/K were obtained in these AlAsSb diodes, which are significantly lower than all semiconductor materials, with similar avalanche region widths, in the literature. Band to band tunelling current was shown to be significantly lower than those in InP and InAlAs diodes with the same avalanche region widths. By utilising an extremely thin 40 nm AlAsSb as multiplication layer, low excess noise factor corresponding to effective k values of 0.1 to 0.15 in InGaAs/AlAsSb SAM APDs was demonstrated. This is lower than that from an InAlAs pin diode with a 100 nm avalanche region. Therefore the potential of using thin AlAsSb avalanche region for next generation high speed and high sensitivity photodetectors has been demonstrated.
机译:由于噪声是通过碰撞电离过程实现的,因此,雪崩光电二极管(APD)在噪声由电子噪声控制时可以提供比传统的p-i-n光电二极管更高的灵敏度。由于互联网通信量的不断增长,特别是在长距离通信系统中,高速且高灵敏度的光电探测器在1.55m的波长下工作,用于光通信,已经受到了广泛的研究。在本文中,设计并表征了高速InGaAs p-i-n光电二极管,并设计了InGaAs / InAlAs分离吸收和倍增(SAM)APD。 InGaAs波导光电二极管的最大-3 dB带宽为26.5 GHz,外部量子效率为38.4%,带宽效率乘积为10.2 GHz,高于从同一晶片制造的常规垂直照明二极管获得的7.14 GHz。在高速InGaAs波导二极管的基础上,制造了InGaAs / InAlAs APD。我们证明了在0.9Vbd(Vbd是击穿电压)时低的〜50 nA暗电流,低的过大噪声系数k0.2(k是过大的噪声模型中电离系数的有效比率)和高达40 GHz的宽带宽低收益。与报告的最佳40 Gb / s APD相比,我们的APD还实现了更高的信号放大,证实了我们的APD适用于40 Gb / s光通信系统。在35 GHz时,信号增强高达24 dB。尽管InGaAs / InAlAs APD可能适合40 Gb / s的操作,但雪崩增益因其有限的增益带宽乘积而受到限制。因此,新型宽带隙AlAsSb雪崩区域的特征在于下一代高速SAM APD。使用雪崩区域宽度为80和230 nm的AlAsSb p-i-n二极管研究了暗电流和雪崩增益的温度依赖性。在这些AlAsSb二极管中,击穿电压的极低温度系数为0.95和1.47 mV / K,在文献中,该系数显着低于所有具有类似雪崩区宽度的半导体材料。带间调谐电流显示出明显低于具有相同雪崩区域宽度的InP和InAlAs二极管中的电流。通过使用极薄的40 nm AlAsSb作为倍增层,证明了InGaAs / AlAsSb SAM APD中的有效k值为0.1至0.15的低过量噪声因子。这比具有100 nm雪崩区的InAlAs pin二极管的低。因此,已经证明了将薄的AlAsSb雪崩区域用于下一代高速,高灵敏度光电探测器的潜力。

著录项

  • 作者

    Xie Shiyu;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类
  • 入库时间 2022-08-20 21:06:20

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号