首页> 外文OA文献 >Large eddy simulation of a fuel-rich turbulent non-premixed reacting flow with radiative heat transfer
【2h】

Large eddy simulation of a fuel-rich turbulent non-premixed reacting flow with radiative heat transfer

机译:富燃料湍流非预混合反应流与辐射传热的大涡模拟

摘要

The aims of this thesis are to apply the Large Eddy Simulation (LES) and beta Probability Density Function (β- PDF) for the simulation of turbulent non-premixed reacting flow, in particularly for the predictions of soot and NO production, and to investigate the radiative heat transfer during combustion process applying Discrete Ordinates Method (DOM). LES seeks the solution by separating the flow field into large-scale eddies, which carry the majority of the energy and are resolved directly, and small-scale eddies, which have been modelled via Smagorinsky model with constant Cs (Smagorinsky model constant) as well as its dynamic calibration. This separation has been made by applying a filtering approach to the governing equations describing the turbulent reacting flow. Firstly, LES technique is applied to investigate the turbulent flow, temperature and species concentrations during the combustion process within an axi-symmetric model cylindrical combustion chamber. Gaseous propane (C3H8) and preheated air of 773K are injected into this cylindrical combustion chamber. The non-premixed combustion process is modelled through the conserved scalar approach with the laminar flamelet model. A detailed chemical mechanism is taken into account to generate the flamelet. The turbulent combustion inside the chamber takes place under a fuel-rich condition for which the overall equivalence ratio of 1.6 is used, the same condition was used by Nishida and Mukohara [1] in their experiment. Secondly, the soot formation in the same flame is investigated by using the LES technique. In this thesis, the soot formation is included through the balance equations for soot mass fraction and soot particle number density with finite rate kinetic source terms to account for soot inception/nucleation, surface growth, agglomeration and oxidation. Thirdly, the NO formation in the flame is studied by applying the LES. The formation of NO is modelled via the extended Zeldovich (thermal) reaction mechanism. A transport equation for NO mass fraction is coupled with the flow and composition fields. Finaly, the radiative heat transfer in the flame is investigated. Both the luminous and non-luminous radiations are modelled through the Radiative Transfer Equation (RTE). The RTE is solved using the Discrete Ordinates Method (DOM/Sn) combining with the LES of the flow, temperature, combustion species and soot formation. The computed results are compared with the available experimental results and the level of agreement between measurements and computations is quite good.
机译:本文的目的是将大涡模拟(LES)和β概率密度函数(β-PDF)用于湍流非预混合反应流的模拟,尤其是用于烟尘和NO产生的预测,并进行研究。运用离散正交方法(DOM)在燃烧过程中辐射热传递。 LES通过将流场分成大涡流和小涡流来寻找解决方案,大涡流携带大部分能量并直接求解,小涡流也通过具有常数Cs(Smagorinsky模型常数)的Smagorinsky模型建模作为其动态校准。这种分离是通过对描述湍流反应流的控制方程采用过滤方法来实现的。首先,利用LES技术研究了轴对称模型圆柱燃烧室内燃烧过程中的湍流,温度和物质浓度。气态丙烷(C3H8)和预热的773K空气被注入该圆柱形燃烧室。通过层流小火焰模型,通过保守的标量方法对非预混燃烧过程进行建模。考虑到产生小火焰的详细化学机理。燃烧室内的湍流燃烧是在富燃料条件下进行的,该条件下的总当量比为1.6,Nishida和Mukohara [1]在他们的实验中使用了相同的条件。其次,使用LES技术研究了同一火焰中的烟灰形成。在本文中,通过烟灰质量分数和烟灰颗粒数密度的平衡方程式,以有限速率动力学源项包括烟灰的形成,以解释烟灰的开始/成核,表面生长,团聚和氧化。第三,通过应用LES研究了火焰中NO的形成。 NO的形成通过扩展的Zeldovich(热)反应机理进行建模。 NO质量分数的输运方程与流场和成分场耦合。最后,研究了火焰中的辐射热传递。发光辐射和非发光辐射均通过辐射传递方程(RTE)进行建模。 RTE是使用离散标准方法(DOM / Sn)结合流量,温度,燃烧种类和烟灰形成的LES求解的。将计算结果与可用的实验结果进行比较,测量和计算之间的一致性水平相当好。

著录项

  • 作者

    Paul Sreebash Chandra;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号