首页> 外文OA文献 >Large-scale simulations of intrinsic parameter fluctuations in nano-scale MOSFETs
【2h】

Large-scale simulations of intrinsic parameter fluctuations in nano-scale MOSFETs

机译:纳米级mOsFET内部参数波动的大规模模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intrinsic parameter fluctuations have become a serious obstacle to the continued scaling of MOSFET devices, particularly in the sub-100 nm regime. The increase in intrinsic parameter fluctuations means that simulations on a statistical scale are necessary to capture device parameter distributions. In this work, large-scale simulations of samples of 100,000s of devices are carried out in order to accurately characterise statistical variability of the threshold voltage in a real 35 nm MOSFET. Simulations were performed for the two dominant sources of statistical variability – random discrete dopants (RDD) and line edge roughness (LER). In total ∼400,000 devices have been simulated, taking approximately 500,000 CPU hours (60 CPU years). The results reveal the true shape of the distribution of threshold voltage, which is shown to be positively skewed for random dopants and negatively skewed for line edge roughness. Through further statistical analysis and data mining, techniques for reconstructing the distributions of the threshold voltage are developed. By using these techniques, methods are demonstrated that allow statistical enhancement of random dopant and line edge roughness simulations, thereby reducing the computational expense necessary to accurately characterise their effects. The accuracy of these techniques is analysed and they are further verified against scaled and alternative device architectures. The combined effects of RDD and LER are also investigated and it is demonstrated that the statistical combination of the individual RDD and LER-induced distributions of threshold voltage closely matches that obtained from simulations. By applying the statistical enhancement techniques developed for RDD and LER, it is shown that the computational cost of characterising their effects can be reduced by 1–2 orders of magnitude.
机译:固有的参数波动已成为MOSFET器件继续按比例缩小的严重障碍,尤其是在100 nm以下的情况下。固有参数波动的增加意味着必须在统计规模上进行仿真才能捕获设备参数分布。在这项工作中,对100,000个器件的样本进行了大规模仿真,以准确地表征实际35 nm MOSFET中阈值电压的统计变化。对统计变异性的两个主要来源进行了模拟-随机离散掺杂物(RDD)和线边缘粗糙度(LER)。总共模拟了约40万个设备,耗时约500,000 CPU小时(60 CPU年)。结果揭示了阈值电压分布的真实形状,对于随机的掺杂物显示为正偏,对于线边缘粗糙度显示为负偏。通过进一步的统计分析和数据挖掘,开发了用于重构阈值电压分布的技术。通过使用这些技术,证明了可以随机增强掺杂剂和线边缘粗糙度模拟的统计增强的方法,从而减少了准确表征其影响所需的计算费用。分析了这些技术的准确性,并针对规模化和替代性的设备架构进一步验证了它们。还研究了RDD和LER的组合效应,并证明了单独的RDD和LER引起的阈值电压分布的统计组合与从仿真中获得的结果紧密匹配。通过应用针对RDD和LER开发的统计增强技术,可以证明表征其影响的计算成本可降低1-2个数量级。

著录项

  • 作者

    Reid David T;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号