首页> 外文OA文献 >3D drift diffusion and 3D Monte Carlo simulation of on-current variability due to random dopants
【2h】

3D drift diffusion and 3D Monte Carlo simulation of on-current variability due to random dopants

机译:三维漂移扩散和3D蒙特卡罗模拟随机掺杂导致的电流变化

摘要

In this work Random Discrete Dopant induced on-current variations have been studied using the Glasgow 3D atomistic drift/diffusion simulator and Monte Carlo simulations. A methodology for incorporating quantum corrections into self-consistent atomistic Monte Carlo simulations via the density gradient effective potential is presented. Quantum corrections based on the density gradient formalism are used to simultaneously capture quantum confinement effects. The quantum corrections not only capture charge confinement effects, but accurately represent the electron impurity interaction used in previous extit{ab initio} atomistic MC simulations, showing agreement with bulk mobility simulation. The effect of quantum corrected transport variation in statistical atomistic MC simulation is then investigated using a series of realistic scaled devices nMOSFETs transistors with channel lengths 35 nm, 25 nm, 18nm, 13 nm and 9 nm. Such simulations result in an increased drain current variability when compared with drift diffusion simulation. The comprehensive statistical analysis of drain current variations is presented separately for each scaled transistor. The investigation has shown increased current variation compared with quantum corrected drift diffusion simulation and with previous classical MC results. Furthermore, it has been studied consistently the impact of transport variability due to scattering from random discrete dopants on the on-current variability in realistic nano CMOS transistors. For the first time, a hierarchic simulation strategy to accurately transfer the increased on-current variability obtained from the ‘ab initio’ MC simulations to DD simulations is subsequently presented. The MC corrected DD simulations are used to produce target $I_D-V_G$ characteristics from which statistical compact models are extracted for use in preliminary design kits at the early stage of new technology development. The impact of transport variability on the accuracy of delay simulation are investigated in detail. Accurate compact models extraction methodology transferring results from accurate physical variability simulation into statistical compact models suitable for statistical circuit simulation is presented. In order to examine te size of this effect on circuits Monte Carlo SPICE simulations of inverter were carried out for 100 samples.
机译:在这项工作中,使用格拉斯哥3D原子漂移/扩散模拟器和蒙特卡洛模拟研究了随机离散掺杂剂引起的电流变化。提出了一种通过密度梯度有效势将量子校正合并到自洽原子蒙特卡罗模拟中的方法。基于密度梯度形式主义的量子校正用于同时捕获量子约束效应。量子校正不仅捕获了电荷约束效应,而且还精确地表示了先前 textit {ab initio}原子MC模拟中使用的电子杂质相互作用,这表明与体迁移率模拟一致。然后,使用一系列实际的比例缩放器件,沟道长度分别为35 nm,25 nm,18 nm,13 nm和9 nm,研究了量子校正的传输变化在统计原子MC模拟中的影响。与漂移扩散仿真相比,此类仿真导致漏极电流可变性增加。针对每个定标晶体管分别提供了漏极电流变化的全面统计分析。研究表明,与量子校正的漂移扩散仿真和以前的经典MC结果相比,电流变化增加。此外,已经连续研究了由于随机离散掺杂剂的散射引起的传输可变性对现实的纳米CMOS晶体管的导通电流可变性的影响。随后,首次提出了一种分层仿真策略,可将从“从头算”的MC仿真获得的增加的导通电流可变性准确地转移到DD仿真。 MC校正的DD模拟用于产生目标$ I_D-V_G $特性,从中提取统计紧凑模型以用于新技术开发的早期阶段的初步设计套件。详细研究了运输可变性对延迟仿真精度的影响。提出了一种精确的紧凑模型提取方法,可将结果从精确的物理可变性仿真转换为适合统计电路仿真的统计紧凑模型。为了检查这种影响电路的大小,对100个样本进行了反相蒙特卡罗SPICE仿真。

著录项

  • 作者

    Kovac Urban;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号