首页> 外文OA文献 >An intelligent manufacturing system for heat treatment scheduling
【2h】

An intelligent manufacturing system for heat treatment scheduling

机译:一种用于热处理调度的智能制造系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research is focused on the integration problem of process planning and scheduling in steel heat treatment operations environment using artificial intelligent techniques that are capable of dealing with such problems. This work addresses the issues involved in developing a suitable methodology for scheduling heat treatment operations of steel. Several intelligent algorithms have been developed for these propose namely, Genetic Algorithm (GA), Sexual Genetic Algorithm (SGA), Genetic Algorithm with Chromosome differentiation (GACD), Age Genetic Algorithm (AGA), and Mimetic Genetic Algorithm (MGA). These algorithms have been employed to develop an efficient intelligent algorithm using Algorithm Portfolio methodology. After that all the algorithms have been tested on two types of scheduling benchmarks. To apply these algorithms on heat treatment scheduling, a furnace model is developed for optimisation proposes. Furthermore, a system that is capable of selecting the optimal heat treatment regime is developed so the required metal properties can be achieved with the least energy consumption and the shortest time using Neuro-Fuzzy (NF) and Particle Swarm Optimisation (PSO) methodologies. Based on this system, PSO is used to optimise the heat treatment process by selecting different heat treatment conditions. The selected conditions are evaluated so the best selection can be identified. This work addresses the issues involved in developing a suitable methodology for developing an NF system and PSO for mechanical properties of the steel. Using the optimisers, furnace model and heat treatment system model, the intelligent system model is developed and implemented successfully. The results of this system were exciting and the optimisers were working correctly.
机译:这项研究的重点是使用能够解决此类问题的人工智能技术,在钢铁热处理操作环境中进行工艺计划和调度的集成问题。这项工作解决了开发合适的方法来安排钢的热处理操作所涉及的问题。已经针对这些提议开发了几种智能算法,即遗传算法(GA),性遗传算法(SGA),具有染色体分化的遗传算法(GACD),年龄遗传算法(AGA)和模拟遗传算法(MGA)。这些算法已被用来开发使用算法组合方法的高效智能算法。之后,所有算法都在两种类型的调度基准上进行了测试。为了将这些算法应用于热处理调度,开发了一个炉模型以进行优化。此外,开发了一种能够选择最佳热处理方案的系统,从而可以使用Neuro-Fuzzy(NF)和粒子群优化(PSO)方法以最少的能耗和最短的时间实现所需的金属性能。基于此系统,PSO用于通过选择不同的热处理条件来优化热处理工艺。对所选条件进行评估,以便可以确定最佳选择。这项工作解决了开发合适的方法以开发用于钢的机械性能的NF系统和PSO所涉及的问题。利用优化器,熔炉模型和热处理系统模型,成功开发并实现了智能系统模型。该系统的结果令人振奋,优化器工作正常。

著录项

  • 作者

    Abbod M F; Al-Kanhal Tawfeeq;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号