首页> 外文OA文献 >Data-driven, mechanistic and hybrid modelling for statistical fault detection and diagnosis in chemical processes
【2h】

Data-driven, mechanistic and hybrid modelling for statistical fault detection and diagnosis in chemical processes

机译:用于化学过程中统计故障检测和诊断的数据驱动,机械和混合建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research and applications of multivariate statistical process monitoring and fault diagnostic techniques for performance monitoring of continuous and batch processes continue to be a very active area of research. Investigations into new statistical and mathematical methods and there applicability to chemical process modelling and performance monitoring is ongoing. Successive researchers have proposed new techniques and models to address the identified limitations and shortcomings of previously applied linear statistical methods such as principal component analysis and partial least squares. This thesis contributes to this volume of research and investigation into alternative approaches and their suitability for continuous and batch process applications. In particular, the thesis proposes a modified canonical variate analysis state space model based monitoring scheme and compares the proposed scheme with several existing statistical process monitoring approaches using a common benchmark simulator – Tennessee Eastman benchmark process. A hybrid data driven and mechanistic model based process monitoring approach is also investigated. The proposed hybrid scheme gives more specific considerations to the implementation and application of the technique for dynamic systems with existing control structures. A nonmechanistic hybrid approach involving the combination of nonlinear and linear data based statistical models to create a pseudo time-variant model for monitoring of large complex plants is also proposed. The hybrid schemes are shown to provide distinct advantages in terms of improved fault detection and reliability. The demonstration of the hybrid schemes were carried out on two separate simulated processes: a CSTR with recycle through a heat exchanger and a CHEMCAD simulated distillation column. Finally, a batch process monitoring schemed based on a proposed implementation of interval partial least squares (IPLS) technique is demonstrated using a benchmark simulated fed-batch penicillin production process. The IPLS strategy employs data unfolding methods and a proposed algorithm for segmentation of the batch duration into optimal intervals to give a unique implementation of a Multiway-IPLS model. Application results show that the proposed method gives better model prediction and monitoring performance than the conventional IPLS approach.
机译:用于连续和批处理过程性能监控的多元统计过程监视和故障诊断技术的研究和应用仍然是非常活跃的研究领域。目前正在研究新的统计和数学方法,并且适用于化学过程建模和性能监控。连续的研究人员提出了新的技术和模型,以解决先前应用的线性统计方法(例如主成分分析和偏最小二乘)的局限性和缺点。本论文有助于对替代方法及其对连续和批处理应用的适用性进行大量研究和调查。特别是,本文提出了一种改进的基于规范变量分析状态空间模型的监视方案,并使用通用的基准模拟器(田纳西州伊士曼基准过程)将该提议的方案与几种现有的统计过程监视方法进行了比较。还研究了基于数据混合和机械模型的混合过程监控方法。所提出的混合方案对具有现有控制结构的动态系统的技术实现和应用给予了更具体的考虑。还提出了一种非机械混合方法,该方法包括基于非线性和线性数据的统计模型的组合,以创建用于监视大型复杂植物的伪时变模型。混合方案显示出在改进的故障检测和可靠性方面具有明显的优势。混合方案的论证是在两个独立的模拟过程中进行的:带热交换器循环的CSTR和一个CHEMCAD模拟蒸馏塔。最后,使用基准模拟补料分批青霉素生产工艺,证明了基于区间偏最小二乘(IPLS)技术的拟议实施实现的分批工艺监控方案。 IPLS策略采用数据展开方法和提议的算法将批处理工期分割为最佳间隔,从而实现Multiway-IPLS模型的独特实现。应用结果表明,与传统的IPLS方法相比,该方法具有更好的模型预测和监测性能。

著录项

  • 作者

    Stubbs Shallon Monique;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号