首页> 外文OA文献 >A biometric authentication model using hand gesture images
【2h】

A biometric authentication model using hand gesture images

机译:使用手势图像的生物认证模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel hand biometric authentication method based on measurements of the user\u27s stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information,associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password \u27iloveu\u27 in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, \u27i\u27, \u27l\u27, \u27o\u27, \u27v\u27, \u27e\u27, and \u27u\u27. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. Itis believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy ofthis novel biometric authentication model which shows up to 93.75% recognition accuracy.
机译:提出了一种基于用户手势语言静态手势测量的新型手生物认证方法。手势的测量可以通过低成本摄像机顺序获取。可能还有其他级别的上下文信息与这些手势相关联,可用于生物识别。作为模拟,签名者可以使用一系列手势,\ u27i \ u27,\ u27l \ u27,\ u27o来编码生物识别密码,而无需在通信网络中相对易受攻击的文本中输入密码\ u27iloveu \ u27。 \ u27,\ u27v \ u27,\ u27e \ u27和\ u27u \ u27。随后,从手势图像中提取本质上是整体模糊的特征,以通过分类模型进行识别,从而通过检查他的手形和手势姿势来判断该签名者是否是他声称的身份。据认为,每个人在手语中都有一定的轻微但独特的行为特征,不同的手形组成也是如此。简单有效的图像处理算法用于手势识别,包括强度分析,颜色直方图和维度分析,以及几种流行的机器学习算法。进行计算机仿真以研究这种新颖的生物特征认证模型的功效,该模型显示出高达93.75%的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号