首页> 外文OA文献 >Accelerating floating-point to fixed-point data type conversion with evolutionary algorithms
【2h】

Accelerating floating-point to fixed-point data type conversion with evolutionary algorithms

机译:使用进化算法加速浮点到定点数据类型转换

摘要

The choice of the data type representation has significant impacts onudthe resource utilisation, maximum clock frequency and power consumptionudof any hardware design. Although arithmetic hardwareudunits for the fixed-point format can improve performance and reduceudenergy consumption, the process of tuning the right bit length isudknown as a time-consuming task, since it is a combinatorial optimisationudproblem guided by the accumulative arithmetic computationuderror. A novel evolutionary approach to accelerate the process of convertingudalgorithms from the floating-point to fixed-point format is presented.udResults are demonstrated by converting three computingintensiveudalgorithms from the mobile robotic scenario, where datauderror accumulated during execution is influenced by external factors,udsuch as sensor noise and navigation environment characteristics. Theudproposed evolutionary algorithm accelerated the conversion processudby up to 2.5 × against the state-of-the-art methods, allowing evenudfurther bit-length optimisations.
机译:数据类型表示形式的选择对任何硬件设计的资源利用率,最大时钟频率和功耗都具有重大影响。尽管定点格式的算术硬件 udunit可以提高性能并降低 udenergy消耗,但是调整正确的位长度的过程 ud众所周知是一项耗时的任务,因为这是累积优化指导的组合优化 udproblem算术运算 uderror。提出了一种新颖的进化方法,用于加速将 udalgorithms从浮点格式转换为定点格式。 ud通过将三种计算密集型 udalgorithms转换为移动机器人场景中的结果,证明了结果受外部因素影响,例如传感器噪音和导航环境特征。提议的进化算法与最新方法相比,将转换过程加速了多达2.5倍,从而实现了甚至更进一步的位长优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号