首页> 外文OA文献 >Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis
【2h】

Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis

机译:多变量GaRCH估计中的模型和分布不确定性:蒙特卡罗分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multivariate GARCH models are in principle able to accommodate the featuresof the dynamic conditional correlations processes, although with the drawback, whenthe number of financial returns series considered increases, that the parameterizationsentail too many parameters.In general, the interaction between model parametrizationof the second conditional moment and the conditional density of asset returnsadopted in the estimation determines the fitting of such models to the observed dynamicsof the data. This paper aims to evaluate the interactions between conditionalsecond moment specifications and probability distributions adopted in the likelihoodcomputation, in forecasting volatilities and covolatilities. We measure the relativeperformances of alternative conditional second moment and probability distributionsspecifications by means of Monte Carlo simulations, using both statistical and financialforecasting loss functions.
机译:多元GARCH模型在原则上能够适应动态条件相关过程的特征,尽管有缺点,当考虑的财务收益序列数增加时,参数化会包含太多参数。通常,第二个条件矩的模型参数化之间的相互作用估计中采用的资产收益率的条件密度决定了此类模型与观测到的数据动态的拟合。本文旨在评估条件二阶矩规范与似然计算中采用的概率分布之间的相互作用,以预测波动率和波动率。我们使用统计和财务预测损失函数,通过蒙特卡洛模拟来测量备选条件第二矩和概率分布的相对性能。

著录项

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号