首页> 外文OA文献 >Identifying observed factors in approximate factor models: estimation and hypothesis testing
【2h】

Identifying observed factors in approximate factor models: estimation and hypothesis testing

机译:识别近似因子模型中的观察因素:估计和假设检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite their popularities in recent years, factor models have long been criticized for the lackof identification. Even when a large number of variables are available, the factors can only beconsistently estimated up to a rotation. In this paper, we try to identify the underlying factors byassociating them to a set of observed variables, and thus give interpretations to the orthogonalfactors estimated by the method of Principal Components. We first propose a estimation procedureto select a set of observed variables, and then test the hypothesis that true factors are exactlinear combinations of the selected variables. Our estimation method is shown to able to correctly identity the true observed factor even in the presence of mild measurement errors, and our test statistics are shown to be more general than those of Bai and Ng (2006). The applicability of our methods in finite samples and the advantages of our tests are confirmed by simulations. Ourmethods are also applied to the returns of portfolios to identify the underlying risk factors.
机译:尽管近年来流行,但因缺乏识别性而长期批评因子模型。即使有大量变量可用,也只能在旋转之前始终一致地估计因子。在本文中,我们试图通过将潜在因素与一组观测变量相关联来识别潜在因素,从而对通过主成分法估计的正交因素进行解释。我们首先提出一种估计程序来选择一组观察变量,然后检验假设真实因素是所选变量的精确线性组合的假设。即使存在轻微的测量误差,我们的估计方法也能够正确识别真实的观测因子,并且我们的测试统计数据比Bai和Ng(2006)的统计数据更通用。通过仿真证实了我们方法在有限样本中的适用性和测试优势。我们的方法也适用于投资组合的收益,以识别潜在的风险因素。

著录项

  • 作者

    Chen Liang;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号