首页> 外文OA文献 >Bayesian Averaging of Classical Estimates in Asymmetric Vector Autoregressive (AVAR) Models
【2h】

Bayesian Averaging of Classical Estimates in Asymmetric Vector Autoregressive (AVAR) Models

机译:非对称向量自回归(aVaR)模型中经典估计的贝叶斯平均

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The estimated Vector AutoRegressive (VAR) model is sensitive to model misspecifications, such as omitted variables, incorrect lag-length, and excluded moving average terms, which results in biased and inconsistent parameter estimates. Furthermore, the symmetric VAR model is more likely misspecified due to the assumption that variables in the VAR have the same level of endogeneity. This paper extends the Bayesian Averaging of Classical Estimates, a robustness procedure in cross-section data, to a vector time-series that is estimated using a large number of Asymmetric VAR models, in order to achieve robust results. The combination of the two procedures is deemed to minimize the effects of misspecification errors by extracting and utilizing more information on the interaction of the variables, and cancelling out the effects of omitted variables and omitted MA terms through averaging. The proposed procedure is applied to simulated data from various forms of model misspecifications. The forecasting accuracy of the proposed procedure was compared to an automatically selected equal lag-length VAR. The results of the simulation suggest that, under misspecification problems, particularly if an important variable and MA terms are omitted, the proposed procedure is better in forecasting than the automatically selected equal lag-length VAR model.
机译:估计的矢量自回归(VAR)模型对模型规范错误敏感,例如遗漏变量,不正确的滞后长度和排除的移动平均项,这会导致参数估算值出现偏差和不一致。此外,由于假设VAR中的变量具有相同的内生性水平,因此对称VAR模型更可能被错误指定。本文将横截面数据的鲁棒性程序贝叶斯经典估计平均法扩展到使用大量非对称VAR模型估计的矢量时间序列,以实现鲁棒的结果。通过提取和利用有关变量交互作用的更多信息,并通过求平均值来抵消遗漏变量和遗漏MA项的影响,可以认为这两个过程的组合可最大程度地减少错误指定错误的影响。拟议的程序适用于各种形式的模型规格不正确的模拟数据。将拟议程序的预测准确性与自动选择的相等滞后长度VAR进行比较。仿真结果表明,在错误指定的问题下,特别是如果省略了重要变量和MA项,则与自动选择的等长VAR模型相比,所提出的过程在预测方面更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号