首页> 外文OA文献 >Technical and scale efficiency in the Italian Citrus Farming: A comparison between Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis(DEA) Models
【2h】

Technical and scale efficiency in the Italian Citrus Farming: A comparison between Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis(DEA) Models

机译:意大利柑橘农业的技术和规模效率:随机前沿分析(sFa)和数据包络分析(DEa)模型的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper aims to estimate technical and scale efficiency in the Italian citrus farming. Estimation was carried out from two different approach: a non parametric and a parametric approach using a Data Envelopment Analysis (DEA) model and a Stochastic Frontier Analysis (SFA) model, respectively. Several studies have compared technical efficiency estimates derived from parametric and non parametric approaches, while a very small number of studies have aimed to compare scale efficiency obtained from different methodological approaches. This is one of the first attempts that aims to put on evidence possible difference in scale efficiency estimations in farming due to methods used. Empirical findings suggest that the greater portion of overall inefficiency in the sample might depend on producing below the production frontier than on operating under an inefficient scale. Furthermore, we found that the estimated technical efficiency from the SFA model is substantially at the same level of this estimated from DEA model, while the scale efficiency arisen from SFA is larger than this obtained from DEA analysis.
机译:本文旨在评估意大利柑橘种植的技术效率和规模效率。估计是通过两种不同的方法进行的:分别使用数据包络分析(DEA)模型和随机边界分析(SFA)模型的非参数方法和参数方法。几项研究比较了从参数方法和非参数方法得出的技术效率估算值,而极少数的研究旨在比较从不同方法论方法获得的规模效率。这是首次尝试证明由于使用的方法导致的农业规模效益估算可能存在差异的尝试之一。经验发现表明,样本中总体效率低下的大部分可能取决于低于生产边界的生产,而不是效率低下的规模。此外,我们发现,SFA模型估计的技术效率与DEA模型估计的技术效率基本处于同一水平,而SFA产生的规模效率大于DEA分析获得的规模效率。

著录项

  • 作者

    Madau Fabio A.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号