首页> 外文OA文献 >Large sample properties of the three-step euclidean likelihood estimators under model misspecification
【2h】

Large sample properties of the three-step euclidean likelihood estimators under model misspecification

机译:模型错误指定下三步欧几里德似然估计的大样本性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies the three-step Euclidean likelihood (3S) estimator and its corrected version as proposed by Antoine, Bonnal and Renault (2007) in globally misspecified models. We establish that the 3S estimator stays √n-convergent and asymptotically Gaussian. The discontinuity in the shrinkage factor makes the analysis of the corrected-3S estimator harder to carry out in misspecified models. We propose a slight modification to this factor to control its rate of divergence in case of misspecification. We show that the resulting modified-3S estimator is also higher order equivalent to the maximum empirical likelihood (EL) estimator in well specified models and √n-convergentand asymptotically Gaussian in misspecified models. Its asymptotic distribution robust to misspecification is also provided. Because of these properties, both the 3S and the modified-3S estimators could be considered as computationally attractive alternatives to the exponentially tilted empirical likelihood estimator proposed by Schennach (2007) which also is higher order equivalent to EL in well specified models and √n-convergent in misspecified models.
机译:本文研究了Antoine,Bonnal和Renault(2007)在全球错误指定的模型中提出的三步欧氏似然(3S)估计量及其校正版本。我们确定3S估计量保持√n收敛且渐近高斯。收缩因子的不连续性使得校正3S估计量的分析更难在错误指定的模型中进行。我们建议对此因素进行轻微修改,以在规格错误的情况下控制其发散率。我们表明,改进的3S估计量还等于指定模型中的最大经验似然(EL)估计量,而在错误指定的模型中则为√n收敛和渐近高斯估计。还提供了对错误指定具有鲁棒性的渐近分布。由于这些特性,3S和3S估计量都可以被认为是Schennach(2007)提出的指数倾斜经验似然估计量在计算上有吸引力的替代方法,该方法在特定模型和√n-中也等效于EL。在错误指定的模型中收敛。

著录项

  • 作者

    Dovonon Prosper;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号