首页> 外文OA文献 >Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models
【2h】

Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models

机译:具有长记忆波动率模型的贵金属价值风险预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, and palladium) with long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under normal and student-t innovations’ distributions. For these analyses, we consider both long and short trading positions. Overall, our results reveal that long memory volatility models under student-t distribution perform well in forecasting a one-day-ahead VaR for both long and short positions. In addition, we find that FIAPARCH model with student-t distribution, which jointly captures long memory and asymmetry, as well as fat-tails, outperforms other models in VaR forecasting. Our results have potential implications for portfolio managers, producers, and policy makers.
机译:在本文中,我们研究了正态和学生t创新分布下具有长记忆波动模型(即FIGARCH,FIAPARCH和HYGARCH)的四种主要贵金属(金,银,铂和钯)的风险价值预测。对于这些分析,我们同时考虑多头和空头头寸。总体而言,我们的结果表明,学生t分布下的长期记忆波动模型在预测多头和空头的提前一天VaR方面表现良好。此外,我们发现具有学生t分布的FIAPARCH模型在VaR预测中优于其他模型,该模型共同捕获了较长的记忆和不对称性,以及长尾巴。我们的结果对投资组合经理,生产者和决策者有潜在的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号