首页> 外文OA文献 >A Bayesian Model of Sample Selection with a Discrete Outcome Variable
【2h】

A Bayesian Model of Sample Selection with a Discrete Outcome Variable

机译:具有离散结果变量的贝叶斯样本选择模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Relatively few published studies apply Heckman’s (1979) sample selection model to the case of a discrete endogenous variable and those are limited to a single outcome equation. However, there are potentially many applications for this model in health, labor and financial economics. To fill in this theoretical gap, I extend the Bayesian multivariate probit setup of Chib and Greenberg (1998) into a model of non-ignorable selection that can handle multiple selection and discrete-continuous outcome equations.The first extension of the multivariate probit model in Chib and Greenberg (1998) allows some of the outcomes to be missing. In addition, I use Cholesky factorization ofthe variance matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler.Finally, using artificial data I show that the model is capable of retrieving the parameters used in the data-generating process and also that the resulting Markov Chainpasses all standard convergence tests.
机译:相对较少的已发表研究将Heckman(1979)的样本选择模型应用于离散内生变量的情况,而这些模型仅限于单个结果方程。但是,此模型在健康,劳动和金融经济学中可能有许多应用。为了填补这一理论空白,我将Chib和Greenberg(1998)的贝叶斯多元概率模型扩展为一个可以处理多个选择和离散连续结果方程的不可忽略选择模型。 Chib和Greenberg(1998)允许某些结果丢失。另外,我使用方差矩阵的Cholesky分解来避免Gibbs采样器中的Metropolis-Hastings算法。最后,使用人工数据,我证明了该模型能够检索数据生成过程中使用的参数,并且得到的结果Markov Chain通过所有标准收敛测试。

著录项

  • 作者

    Maksym Obrizan;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号