首页> 外文OA文献 >Optimal decomposition of P2P networks based on file exchange patterns for multimedia content search replication
【2h】

Optimal decomposition of P2P networks based on file exchange patterns for multimedia content search replication

机译:基于文件交换模式的p2p网络的最优分解,用于多媒体内容搜索和复制

摘要

In this paper, we address the issues of multimedia content search and replication over peer-to peer networks. We use the concept of semantic proximity that exploits the file exchange patterns exhibited among peer users so as to decompose the network into semantic clusters. Peer nodes are then decomposed into semantic clusters so that a) the probability that a node locates content within its own cluster is maximized, while simultaneously b) the respective probability of finding this content outside this cluster is minimized The semantic organization is then used for applying efficient cluster-based content replication strategies. Two different schemes are examined; the unrestricted and the restricted approach. The first one distributes multimedia content within peers of a cluster so that the average hop distance among nodes and objects weighted by the object popularity is minimized. This approach takes into account no Quality of Service (QoS) guarantees. Instead, the second scheme iteratively partitions the nodes of a cluster during each object replication based on a QoS violation criterion. The proposed algorithms are experimentally evaluated and compared with other approaches to demonstrate the efficacy of the proposed schemes. Copyright 2007 ACM.
机译:在本文中,我们解决了通过对等网络进行多媒体内容搜索和复制的问题。我们使用语义接近度的概念,该概念利用对等用户之间展现的文件交换模式,从而将网络分解为语义簇。然后将对等节点分解为语义集群,以便使a)节点将内容定位在其自己的集群中的概率最大化,同时将b)在该集群之外找到该内容的相应概率最小化。然后,将语义组织用于应用高效的基于群集的内容复制策略。研究了两种不同的方案;不受限制和受限制的方法。第一个将多媒体内容分发到群集的对等节点中,以使节点和对象之间的平均跳跃距离(由对象流行度加权)最小化。此方法不考虑服务质量(QoS)保证。取而代之的是,第二种方案会在每个对象复制期间基于QoS违反标准迭代地对群集的节点进行分区。对提出的算法进行实验评估,并与其他方法进行比较,以证明提出的方案的有效性。版权所有2007 ACM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号