首页> 外文OA文献 >The application of genetic algorithms to parameter estimation in lead-acid battery equivalent circuit models
【2h】

The application of genetic algorithms to parameter estimation in lead-acid battery equivalent circuit models

机译:遗传算法在铅酸蓄电池等效电路模型参数估计中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis summarises the research work in the development of the battery status estimation algorithm. A model was developed to describe the process of battery discharge. Genetic Algorithms were used as a tool to identify the parameters of the battery, including the internal resistances, SOC, and capacity. Simulation results show that the model is able to adequately simulate the battery discharge process. The aforementioned models were extended to a further investigation of the batteries state of health. There is a link between the status of battery health and the internal resistance. Six batteries were discharged and charged to simulate the capacity loss occurs in normal operation, which is related to the state of health, The parameter estimation was able to adequately distinguish between different state of health. These results indicate that the internal resistance increases when the state of health drops. This progress is at first slow when the battery is new but the becomes faster when the remaining capacity of battery drops to about 75% of the initial. It is found in the thesis that the value of internal resistance is increased by 25% approximately when the state of health is brought down to about 50%.
机译:本文总结了电池状态估计算法开发中的研究工作。开发了一个描述电池放电过程的模型。遗传算法被用作识别电池参数的工具,包括内部电阻,SOC和容量。仿真结果表明,该模型能够充分模拟电池放电过程。前述模型被扩展到电池健康状态的进一步研究。电池状态与内部电阻之间存在联系。对六个电池进行放电和充电,以模拟正常运行中发生的容量损失,这与健康状况有关。参数估计能够充分地区分不同的健康状况。这些结果表明,当健康状况下降时,内阻会增加。当电池是新电池时,此过程起初速度较慢,但​​当电池的剩余电量下降到初始电量的75%左右时,此过程会变快。在论文中发现,当健康状态降低到约50%时,内阻值大约增加25%。

著录项

  • 作者

    Guo Shen;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号