首页> 外文OA文献 >The role of dynamic features in speaker verification
【2h】

The role of dynamic features in speaker verification

机译:动态特征在说话人验证中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis presents study to explore the role of dynamic features in speaker verification. Based on the theory that dynamic information should contain important speaker information, modelling the dynamics should have the potential to improve the speaker verification performance. Experiments on TD-SV using segmental hidden Markov models (SHMMs) on the YOHO database show performance improvement. However there is no significant improvement for TI-SV from experiments on the Switchboard database, using segmental GMMs. Analysis of the TD-SV results confirms that the speech dynamics modeled by SHMMs contribute more to the SV accuracy. Analysis of the TI-SV results indicates that the lack of speech dynamic information is a feature of GMM systems. It seems that the priority of the maximum likelihood training algorithm is to model stationary regions, and the role of dynamic features in GMM system, is to ensure that the classification focuses on static regions rather than to model dynamics. Study on TI-SV was carried out using conventional GMMs. Without RASTA filtering, the `delta-only' system works best. However, after RASTA filtering, the `static-plus-delta' system performs best. The results suggest that the good performance of the `delta-only' system before RASTA is mainly due to the noise robustness of the delta parameters.
机译:本文提出了研究以探讨动态特征在说话者验证中的作用。基于动态信息应包含重要讲话者信息的理论,对动力学进行建模应具有改善讲话者验证性能的潜力。在YOHO数据库上使用分段隐式马尔可夫模型(SHMM)对TD-SV进行的实验显示出性能的提高。但是,通过使用分段GMM在Switchboard数据库上进行的实验,TI-SV并没有明显改善。对TD-SV结果的分析证实,由SHMM建模的语音动力学对SV准确性的贡献更大。对TI-SV结果的分析表明,缺少语音动态信息是GMM系统的特征。似乎最大似然训练算法的优先级是对静态区域进行建模,而动态特征在GMM系统中的作用是确保分类集中于静态区域而不是对动力学进行建模。 TI-SV的研究是使用常规GMM进行的。如果没有RASTA过滤,则“仅增量”系统效果最佳。但是,经过RASTA过滤后,“静态加三角洲”系统的效果最佳。结果表明,在RASTA之前,“仅增量”系统的良好性能主要归因于增量参数的噪声鲁棒性。

著录项

  • 作者

    Liu Ying;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号