首页> 外文OA文献 >A niching genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization
【2h】

A niching genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

机译:一种小型遗传算法应用于核电站辅助给水系统监测测试政策优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article extends previous efforts on genetic algorithms (GAs) applied to a nuclear power plant (NPP) auxiliary feedwater system (AFWS) surveillance tests policy optimization. We introduce the application of a niching genetic algorithm (NGA) to this problem and compare its performance to previous results. The NGA maintains a populational diversity during the search process, thus promoting a greater exploration of the search space. The optimization problem consists in maximizing the system’s average availability for a givenudperiod of time, considering realistic features such as: (i) aging effects on standby components during the tests; (ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; (iii) components have distinct test parameters (outage time, aging factors, etc.) and (iv) tests are not necessarily periodic. We find that the NGA performs better than the conventional GA and the island GA due to a greater exploration of the search space.
机译:本文扩展了先前在遗传算法(GA)应用于核电站(NPP)辅助给水系统(AFWS)监视测试策略优化的工作。我们介绍了小生境遗传算法(NGA)在此问题上的应用,并将其性能与以前的结果进行了比较。 NGA在搜索过程中保持种群多样性,从而促进了对搜索空间的更大探索。优化问题在于考虑给定的现实特征,例如在给定的 upupup时间内最大化系统的平均可用性,例如:(i)测试期间对备用组件的老化影响; (ii)揭示测试中的失败意味着需要进行纠正性维护,从而增加中断时间; (iii)组件具有不同的测试参数(停机时间,老化因素等),并且(iv)测试不一定是定期的。我们发现,由于对搜索空间的更大探索,NGA的性能优于常规GA和孤岛GA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号