首页> 外文OA文献 >Design and Implementation of Self Learning Autonomous Robot using Neural Networks under ROS (Robot Operating System) Platform
【2h】

Design and Implementation of Self Learning Autonomous Robot using Neural Networks under ROS (Robot Operating System) Platform

机译:基于ROs(机器人操作系统)平台的神经网络自学习自主机器人的设计与实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this poster, we are designed and implemented an avoidance obstacle robot by using ROS (Robot operating system) as main platform. Neural Network algorithm has been used to program the robot. The algorithm has been written in Python programming language. In the hardware part, Arduino Uno Board with Ultra sonic sensor have been used to to detect the obstacles. Our contribution will be how to make the Robot detects the obstacle using neural network by learning himself from the environment and save that data which is getting by the ultra-sonic sensor to the base station so when it comes back to the same environment, the robot will not need to do the same procedure because the data already saved to the Base Station. All the related variables like Velocity, Acceleration and distance, etc. will get from ROS platform. The ROS will minimize the coding and gives us relative results. The communication between the robot and the base station will be wireless.
机译:在本海报中,我们以ROS(机器人操作系统)为主要平台设计并实现了避障机器人。神经网络算法已用于对机器人进行编程。该算法已使用Python编程语言编写。在硬件部分,带有超声波传感器的Arduino Uno开发板已用于检测障碍物。我们的贡献将是如何使机器人通过从环境中学习自己来使用神经网络检测障碍物,并将超声波传感器获取的数据保存到基站,以便当机器人返回相同的环境时,机器人不需要执行相同的步骤,因为数据已保存到基站。速度,加速度和距离等所有相关变量都将从ROS平台获取。 ROS将最小化编码并为我们提供相对结果。机器人与基站之间的通信将是无线的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号