首页> 外文OA文献 >Design and Simulation of aMEMS Thermal Actuated Micropump
【2h】

Design and Simulation of aMEMS Thermal Actuated Micropump

机译:amEms热驱动微泵的设计与仿真

摘要

In recently years, micromachining technology and biomedical are integrating with each other has provided us great convenient on many applications such as gene chip, drug delivery, nucleic acid synthesis etc. How to efficient and rapid transportation of microfluids has been a challenging for biomedical technology; follow by the rapid development of Micro-Electro-Mechanical – Systems and biomedical engineering. . United States of America has become one of the most potential technologies due to the demand of the medical examination and test increase step by step. But In nowadays, some of countries still used large traditional machine for medical tests, it may be a hindrance for obtain bio-information. If BioMEMS technology used more widely, have very positive consequences as a whole. And less required sample for diagnostics, as well as lower reagents costs. Faster response times and process control due to short diffusion distances. It also can be safer platform for biological studies because of integration of functionality, smaller fluid volumes and energies. Another advantage is that lower fabrication costs, easier mass production and allowing cheap disposable chips. Thus, develop low costs devices with stable performance and portability and was able to meet the need of medical detection is the most urgent task. How fast and effective delivery fluid can be challenging in MEMS technology. Many research of micropump micropump have been published one after another. Such like Electro osmotic micropumps, piezoelectric micropumps, Pneumatic micropumps, Magnetic micropumps…etc. Pneumatic is the one of surest and quickest method. In this poster, the design and simulation of a MEMS thermal actuated micropump is reported. The micropump consists of a microfludic chamber on top of a thermal actuation chamber. The PDMS (Polydimethysioxane) membranes are activated pneumatically by air pressure which generates a rapid transporting of microfluids to target. The working principle of the micropump is analyzed in detail. Based on the theoretical analysis, a set of optimized design parameters of the micropump are suggested. Simulation is used to verify the function of the micropump. Compared to traditional methods, this MEMS thermal actuated micropump has some advantages, like low costs, more easy mass production. If integrate with testing chip...etc. It could provide a useful tool for biomedical field and be crucial for micro total analysis system. Bio-chip is kinds of modern high-tech chip. It integrate laboratory’s functions on miniature chip that usually made by silicon chips and glass. It can be divided into two groups. That are “lab on a chip” and” Micro array”. Microfluidics technology is a very important part of bio-chip. In micro scale, surface area volume ratio and forces within the Atom increase because tiny size and geometry. In this situation, fluid resistances also increase in micro channel. Thus, driving force is necessary for fluid acting in micro channel. It is one of the motivations. Another goal is formulate a micro pump that has the advantages of convenient arrangement and usage, time saving, and material saving; in order to reduce the cost and consider the possibility of disposable chip. This paper used the Polydimethylsiloxane for basic materials. They have some advantages like high biocompatibility, high light transmission and producing simple.
机译:近年来,微加工技术与生物医学相互融合,为我们在基因芯片,药物输送,核酸合成等许多应用领域提供了极大的便利。其次是微机电系统和生物医学工程的迅速发展。 。由于医学检查和测试的需求逐步增加,美利坚合众国已成为最有潜力的技术之一。但是如今,一些国家仍在使用大型传统机器进行医学检查,这可能是获取生物信息的障碍。如果BioMEMS技术得到更广泛的应用,将对整体产生非常积极的影响。诊断所需的样品更少,试剂成本更低。由于扩散距离短,因此响应时间和过程控制更快。由于功能的集成,较小的流体体积和能量,它也可以是用于生物学研究的更安全的平台。另一个优点是更低的制造成本,更容易的批量生产以及允许廉价的一次性芯片。因此,开发具有稳定性能和便携性并能够满足医疗检测需求的低成本设备是最紧迫的任务。在MEMS技术中,如何快速有效地输送流体可能是一个挑战。微型泵的许多研究已经陆陆续续发表。如电渗透微型泵,压电微型泵,气动微型泵,磁性微型泵等。气动是最可靠,最快捷的方法之一。在此海报中,报道了MEMS热激励微型泵的设计和仿真。微型泵由位于热致动腔顶部的微流体腔组成。 PDMS(聚二甲基硅氧烷)膜通过气压气动激活,从而将微流体快速传输到目标。详细分析了微型泵的工作原理。在理论分析的基础上,提出了一套优化的微型泵设计参数。仿真用于验证微型泵的功能。与传统方法相比,这种MEMS热激励微型泵具有一些优势,例如成本低,更易于批量生产。如果与测试芯片集成...等它可以为生物医学领域提供有用的工具,并且对于微观总体分析系统至关重要。生物芯片是现代高科技的一种。它将实验室的功能集成到通常由硅芯片和玻璃制成的微型芯片上。它可以分为两组。那就是“芯片实验室”和“微阵列”。微流体技术是生物芯片中非常重要的一部分。在微观尺度上,由于微小的尺寸和几何形状,表面积体积比和原子内的力增加。在这种情况下,微通道中的流体阻力也会增加。因此,驱动力对于作用在微通道中的流体是必需的。这是动机之一。另一个目的是提出一种微型泵,其具有布置和使用方便,省时,省料的优点。为了降低成本并考虑使用一次性切屑的可能性。本文将聚二甲基硅氧烷用作基础材料。它们具有高生物相容性,高透光率和生产简单等优点。

著录项

  • 作者

    Lin Shiangyu;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号