首页> 外文OA文献 >Face Recognition - Algorithmic Approach For Large Datasets And 3D Based Point Clouds
【2h】

Face Recognition - Algorithmic Approach For Large Datasets And 3D Based Point Clouds

机译:人脸识别 - 大数据集和基于3D的点云的算法方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work proposes solutions for two different scenarios in face recognition and verification. The first scenario involves large scale unconstrained unsupervised face recognition. The proposed system for this scenario is a complete face recognition framework. The proposed system first studies the performance of unsupervised face recognition for frontalized captured faces in the wild under the effect of a single image super-resolution algorithm. The system also introduces new high dimensional features based on LBP and SURF that perform better than the state-of-the-art features for unconstrained unsupervised face recognition. To solve the large scale recognition process, a new algorithm has been designed to manipulate face images in the dataset. This new algorithm represents all training face images as a fully connected graph. The algorithm then divides the fully connected graph into simpler sub-graphs to enhance the overall recognition rate. The sub-graphs are generated dynamically, and a comparison between different sub-graph selection techniques including minimizing edge weight sums, random selection, and maximizing sum of edge weights inside the sub-graph is provided. Results show that the optimized hierarchical dynamic technique developed with sub-graphs selection increases the recognition rate in large benchmark image dataset by more than 40% for rank 1 recognition rate compared to the original single large graph method. The approach developed in this research is tested on different datasets, especially if the number of images per person in the training data is low. Furthermore, in order to improve rank 1 recognition rates and to reduce the computation time of the recognition process, a new technique that combines the hierarchical face recognition algorithm and a deep learning neural network using Siamese structure for face verification is proposed. The second part of this work addresses the usage of neural generative models for 3D faces with an application in face recognition when 3D datasets are utilized separately without the existence of texture information scenarios. An improved technique is developed to construct new representations for point clouds containing 3D information. The technique employs a regression neural network model trained using Levenberg-Marquardt (LM) algorithm. One of the advantages of this new representation is the significant reduction in storage space required for point clouds due to the utilization of a regression model for depth map regeneration. Moreover, the trained neural models can be used to generate a super-resolution version of the original 3D point clouds. The proposed regression representation is also used with a deep Siamese neural system to implement a complete depth-based neural face recognition and verification framework. The results indicate that the proposed system provides highly accurate and efficient face recognition results with 3D information only without texture information.
机译:这项工作为人脸识别和验证中的两种不同方案提出了解决方案。第一种情况涉及大规模无约束,无监督的人脸识别。针对这种情况的建议系统是一个完整的面部识别框架。所提出的系统首先研究在单图像超分辨率算法的作用下在野外对正面捕获的人脸进行无监督人脸识别的性能。该系统还引入了基于LBP和SURF的新的高维特征,这些特征比无约束的无监督人脸识别的性能要优于最新特征。为了解决大规模识别过程,设计了一种新算法来处理数据集中的人脸图像。这种新算法将所有训练的人脸图像表示为完全连接的图形。然后,该算法将完全连接的图分为更简单的子图,以提高总体识别率。子图是动态生成的,并且提供了不同子图选择技术之间的比较,包括最小化边缘权重总和,随机选择和最大化子图内部的边缘权重总和。结果表明,与原始的单个大图方法相比,使用子图选择开发的优化的分层动态技术将大型基准图像数据集的1级识别率的识别率提高了40%以上。本研究开发的方法在不同的数据集上进行了测试,尤其是在训练数据中每人的图像数量较少的情况下。此外,为了提高等级1的识别率并减少识别过程的计算时间,提出了一种新的技术,该技术结合了分层面部识别算法和使用暹罗结构的深度学习神经网络进行面部验证。当不单独使用3D数据集而没有纹理信息场景的情况下,这项工作的第二部分介绍了针对3D面部的神经生成模型及其在面部识别中的应用。开发了一种改进的技术来构造包含3D信息的点云的新表示形式。该技术采用使用Levenberg-Marquardt(LM)算法训练的回归神经网络模型。这种新表示的优点之一是由于利用了深度图再生的回归模型,大大减少了点云所需的存储空间。此外,训练有素的神经模型可用于生成原始3D点云的超分辨率版本。所提出的回归表示也与深度暹罗神经系统一起使用,以实现完整的基于深度的神经人脸识别和验证框架。结果表明,所提出的系统仅在没有纹理信息的情况下提供具有3D信息的高度准确和高效的人脸识别结果。

著录项

  • 作者

    El-Sayed Ahmed;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号