首页> 外文OA文献 >Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: An efficient tool for data processing and analysis
【2h】

Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: An efficient tool for data processing and analysis

机译:应用于原位X射线吸收光谱数据的多变量曲线分辨率:数据处理和分析的有效工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large datasets containing many spectra commonly associated with in situ or operando experiments call for new data treatment strategies as conventional scan by scan data analysis methods have become a time-consuming bottleneck. Several convenient automated data processing procedures like least square fitting of reference spectra exist but are based on assumptions. Here we present the application of multivariate curve resolution (MCR) as a blind-source separation method to efficiently process a large data set of an in situ X-ray absorption spectroscopy experiment where the sample undergoes a periodic concentration perturbation. MCR was applied to data from a reversible reduction–oxidation reaction of a rhenium promoted cobalt Fischer–Tropsch synthesis catalyst. The MCR algorithm was capable of extracting in a highly automated manner the component spectra with a different kinetic evolution together with their respective concentration profiles without the use of reference spectra. The modulative nature of our experiments allows for averaging of a number of identical periods and hence an increase in the signal to noise ratio (S/N) which is efficiently exploited by MCR. The practical and added value of the approach in extracting information from large and complex datasets, typical for in situ and operando studies, is highlighted.
机译:包含许多通常与原位或操作实验相关的光谱的大型数据集要求采用新的数据处理策略,因为通过扫描数据分析方法进行常规扫描已成为一个耗时的瓶颈。存在几种方便的自动化数据处理过程,例如参考光谱的最小二乘拟合,但是这些过程是基于假设的。在这里,我们介绍了多变量曲线分辨率(MCR)作为盲源分离方法的应用,以有效地处理原位X射线吸收光谱实验的大数据集,其中样品经历周期性的浓度扰动。 MCR已应用于to助钴Fischer-Tropsch合成催化剂的可逆还原-氧化反应数据。 MCR算法能够在不使用参考光谱的情况下,以高度自动化的方式提取具有不同动力学变化的组分光谱及其各自的浓度曲线。我们实验的调制性质允许平均多个相同周期,因此可以提高MCR有效利用的信噪比(S / N)。着重指出了该方法从大型和复杂数据集中提取信息的实用性和附加价值,这些数据通常用于原位和操作研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号