首页> 外文OA文献 >Non-parametric estimation of conditional densities: A new method
【2h】

Non-parametric estimation of conditional densities: A new method

机译:条件密度的非参数估计:一种新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let X = (X1,...,Xp) be a stochastic vector having joint density function fX(x) with partitions X1 = (X1,...,Xk) and X2 = (Xk+1,...,Xp). A new method for estimating the conditional density function of X1 given X2 is presented. It is based on locally Gaussian approximations, but simplified in order to tackle the curse of dimensionality in multivariate applications, where both response and explanatory variables can be vectors. We compare our method to some available competitors, and the error of approximation is shown to be small in a series of examples using real and simulated data, and the estimator is shown to be particularly robust against noise caused by independent variables. We also present examples of practical applications of our conditional density estimator in the analysis of time series. Typical values for k in our examples are 1 and 2, and we include simulation experiments with values of p up to 6. Large sample theory is established under a strong mixing condition.
机译:令X =(X1,...,Xp)是具有联合密度函数fX(x)且分区X1 =(X1,...,Xk)和X2 =(Xk + 1,...,Xp)的随机向量)。提出了一种在给定X2的情况下估计X1的条件密度函数的新方法。它基于局部高斯近似,但是经过简化以应对多维应用程序中的维数诅咒,在这些应用程序中,响应变量和解释变量都可以是向量。我们将我们的方法与一些可用的竞争对手进行了比较,在使用真实数据和模拟数据的一系列示例中,逼近误差显示为很小,并且估算器显示出对自变量引起的噪声的鲁棒性。我们还将提供条件密度估计器在时间序列分析中的实际应用示例。在我们的示例中,k的典型值为1和2,并且我们包括p值高达6的模拟实验。在强混合条件下建立了大样本理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号