首页> 外文OA文献 >Robust Data Processing in the Presence of Uncertainty and Outliers: Case of Localization Problems
【2h】

Robust Data Processing in the Presence of Uncertainty and Outliers: Case of Localization Problems

机译:不确定性和异常值存在下的鲁棒数据处理:局部化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To properly process data, we need to take into account both the measurement errors and the fact that some of the observations may be outliers. This is especially important in radar-based localization problems, where some signals may reflect not from the analyzed object, but from some nearby object. There are known methods for dealing with both measurement errors and outliers in situations in which we have full information about the corresponding probability distributions. There are also known statistics-based methods for dealing with measurement errors in situations when we only have partial information about the corresponding probabilities. In this paper, we show how these methods can be extended to situations in which we also have partial inf0ormation about the outliers (and even to situations when we have no information about the outliers). In some situations in which efficient semi-heuristic methods are known, our methodology leads to a justification of these efficient heuristics -- which makes us confident that our new methods will be efficient in other situations as well.
机译:为了正确处理数据,我们需要同时考虑测量误差和某些观测值可能离群的事实。这在基于雷达的定位问题中尤其重要,在该问题中,某些信号可能不是从分析对象反射出来,而是从附近的一些对象反射出来。在我们拥有有关相应概率分布的完整信息的情况下,有一些已知的方法可以处理测量误差和异常值。当我们只掌握有关概率的部分信息时,也存在基于统计的已知方法来处理测量错误。在本文中,我们展示了如何将这些方法扩展到对局外值也具有部分信息的情况(甚至扩展到对局外值无了解的情况)。在某些已知有效的半启发式方法的情况下,我们的方法论证明了这些有效启发式的理由-这使我们确信,我们的新方法在其他情况下也将是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号