首页> 外文OA文献 >Localized Regression Analysis as a Method for Detecting Erroneous Measurements in Geospatial Databases, with Application to Gravity Databases
【2h】

Localized Regression Analysis as a Method for Detecting Erroneous Measurements in Geospatial Databases, with Application to Gravity Databases

机译:局部回归分析作为检测地理空间数据库中错误测量的方法,应用于重力数据库

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geospatial databases generally consist of measurements related to points (or pixels in the case of raster data), lines, and polygons. In recent years, the size and complexity of these databases have increased significantly and they often contain erroneous measurements or noise. In this paper, we address the problem of detecting erroneous and suspicious values in a database consisting of point measurements. We use a database of measurements of anomalies in the Earthu27s gravity field that we have complied as a test case, and we found that the standard methods of detecting erroneous measurements - based on regression analysis - do not work well. As a result, experts use manual methods to clean such databases that are very time-consuming. In this paper, we propose a (natural) u22localizedu22 version of regression analysis as a technique for automatic cleaning of the database and illustrate its efficiency in the case of this gravity database. We believe that this approach will prove to be useful when dealing with many other types of point data.
机译:地理空间数据库通常由与点(在栅格数据的情况下为像素),线和面有关的度量组成。近年来,这些数据库的大小和复杂性显着增加,并且它们通常包含错误的测量结果或噪声。在本文中,我们解决了在由点测量组成的数据库中检测错误和可疑值的问题。我们使用已作为测试案例汇编的地球重力场中异常测量值的数据库,发现基于回归分析的检测错误测量值的标准方法效果不佳。结果,专家使用手动方法来清理此类数据库,这非常耗时。在本文中,我们提出了回归分析的(自然)版本,作为自动清理数据库的技术,并说明了在这种重力数据库情况下的效率。我们认为,这种方法在处理许多其他类型的点数据时将被证明是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号