首页> 外文OA文献 >Dynamic Load Balancing on Multi-GPUs System for Big Data Processing
【2h】

Dynamic Load Balancing on Multi-GPUs System for Big Data Processing

机译:用于大数据处理的多GpU系统动态负载均衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The powerful parallel computing capability of modern GPU (Graphics Processing Unit) processors has attracted increasing attentions of researchers and engineers who had conducted a large number of GPU-based acceleration research projects. However, current single GPU based solutions are still incapable of fulfilling the real-time computational requirements from the latest big data applications. Thus, the multi-GPU solution has become a trend for many real-time application attempts. In those cases, the computational load balancing over the multiple GPU nodes is often the key bottleneck that needs to be further studied to ensure the best possible performance. The existing load balancing approaches are mainly based on the assumption that all GPUs in the same system provide equal computational performance, and had fallen short to address the situations from heterogeneous multi-GPU systems. This paper presents a novel dynamic load balancing model for heterogeneous multi-GPU systems based on the fuzzy neural network (FNN) framework. The devised model has been implemented and demonstrated in a case study for improving the computational performance of a two dimensional (2D) discrete wavelet transform (DWT). Experiment results show that this dynamic load balancing model has enabled a high computational throughput that can satisfy the real-time and accuracy requirements from many big data processing applications.
机译:现代GPU(图形处理单元)处理器强大的并行计算能力吸引了进行了大量基于GPU的加速研究项目的研究人员和工程师的关注。但是,当前基于单个GPU的解决方案仍然无法满足最新大数据应用程序的实时计算要求。因此,多GPU解决方案已成为许多实时应用程序尝试的趋势。在这些情况下,多个GPU节点上的计算负载平衡通常是关键瓶颈,需要进一步研究以确保可能的最佳性能。现有的负载平衡方法主要基于以下假设:同一系统中的所有GPU均提供相同的计算性能,并且不足以解决异构多GPU系统的情况。本文提出了一种基于模糊神经网络(FNN)框架的异构多GPU系统动态负载均衡模型。设计的模型已在案例研究中得到实现和演示,以提高二维(2D)离散小波变换(DWT)的计算性能。实验结果表明,该动态负载平衡模型实现了很高的计算吞吐量,可以满足许多大数据处理应用程序对实时性和准确性的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号