首页> 外文OA文献 >Privacy-preserving distributed service recommendation based on locality-sensitive hashing
【2h】

Privacy-preserving distributed service recommendation based on locality-sensitive hashing

机译:基于位置敏感的散列的保护隐私的分布式服务建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the advent of IoT (Internet of Things) age, considerable web services are emerging rapidly in service communities, which places a heavy burden on the target users’ service selection decisions. In this situation, various techniques, e.g., collaborative filtering (i.e., CF) is introduced in service recommendation to alleviate the service selection burden. However, traditional CF-based service recommendation approaches often assume that the historical user-service quality data is centralized, while neglect the distributed recommendation situation. Generally, distributed service recommendation involves inevitable message communication among different parties and hence, brings challenging efficiency and privacy concerns. In view of this challenge, a novel privacy-preserving distributed service recommendation approach based on Locality-Sensitive Hashing (LSH), i.e., DistSRLSH is put forward in this paper. Through LSH, DistSRLSH can achieve a good tradeoff among service recommendation accuracy, privacy-preservation and efficiency in distributed environment. Finally, through a set of experiments deployed on WS-DREAM dataset, we validate the feasibility of our proposal in handling distributed service recommendation problems.
机译:随着物联网时代的到来,大量的Web服务在服务社区中迅速兴起,这给目标用户的服务选择决策带来了沉重的负担。在这种情况下,在服务推荐中引入了各种技术,例如协作过滤(即,CF),以减轻服务选择负担。然而,传统的基于CF的服务推荐方法通常假定历史用户服务质量数据是集中的,而忽略了分布式推荐情况。通常,分布式服务推荐涉及各方之间不可避免的消息通信,因此带来了挑战性的效率和隐私问题。针对这一挑战,本文提出了一种基于局部敏感哈希(LSH)的新型隐私保护分布式服务推荐方法,即DistSRLSH。通过LSH,DistSRLSH可以在分布式环境中的服务推荐准确性,隐私保护和效率之间取得良好的平衡。最后,通过在WS-DREAM数据集上部署的一组实验,我们验证了我们的提案在处理分布式服务推荐问题中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号