首页> 外文OA文献 >Novel Pathways to High-Efficiency Chalcopyrite Photovoltaic Devices: A Spectroscopic Investigation of Alternative Buffer Layers and Alkali-Treated Absorbers
【2h】

Novel Pathways to High-Efficiency Chalcopyrite Photovoltaic Devices: A Spectroscopic Investigation of Alternative Buffer Layers and Alkali-Treated Absorbers

机译:通向高效黄铜矿光伏器件的新途径:替代缓冲层和碱处理吸收剂的光谱研究

摘要

Within the past few years, breakthroughs in Cu(In,Ga)Se2 (CIGSe) thin-film photovoltaic device efficiencies (on a laboratory scale) were achieved utilizing alkali-treated (KF) absorbers. Na incorporation in the CIGSe absorber, either diffused from the substrate or deliberately deposited, affects the surface electronic properties of the CIGSe absorber. The role of Na, however, is still not fully understood with some studies suggesting that Na also passivates defects at the grain boundaries. Replacing Na with K offered an efficiency boost resulting in KF treatments becoming the new “hot topic” in the chalcopyrite field, both in terms of understanding how the treatment changes the absorber along with studying the differences between alternative KF deposition methods. To provide insight on these issues, x-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy, inverse photoemission spectroscopy (IPES), as well as x-ray emission spectroscopy (XES) are utilized to investigate two sample sets. The first set (Chapter 4) compares the effects of both KF and NaF treatments on absorbers taken from the production line of STION and the National Renewable Energy Laboratory. The purpose here is to compare how similar alkali-treatments affect chalcopyrite devices from different sources along with comparing the alkali-treatments themselves. The second sample set (Chapter 5) investigates effects of KF treatments when incorporated utilizing different deposition techniques.The most recent world record efficiency for CIGSe thin-film devices was not achieved with the KF-treatment, but with the replacement of the traditional CdS buffer layer (between the absorber and transparent front electrode) with Zn(O,S), a material offering the possibility of increasing the current collection in the shorter wavelength region of the solar spectrum. To further optimize these photovoltaic devices, an understanding of the interactions between the absorber and the buffer layer is crucial. For example, record CdS/CIGSe devices have a flat conduction band alignment at the buffer/absorber interface, while, in contrast, the less efficient CdS/Cu(In,Ga)S2 device exhibits a cliff-like conduction band offset, impeding electron transport. Thus, a determination of the conduction band offset is, among other aspects, of significant importance.When using Zn(O,S) as the buffer layer, it should be noted that the bandgap of a Zn(O,S) alloy exhibits a strong bowing effect as the O:S ratio varies. With the ability to change the O:S ratio and alter the bandgap, it is thus important to understand the chemical and electronic structure of the Zn(O,S)/CIGSe interface in high-efficiency devices through direct and independent analysis of the heterojunction formation, the valence band, and the conduction band. This is the first non-destructive analysis of the interface using XPS, UPS, IPES, and XES investigating samples with varying buffer layer thickness. A comprehensive and all-experimental depiction of the electronic level alignment (Chapter 6) and chemical interactions (Chapter 7) at the interface will be presented.
机译:在过去几年中,利用碱处理(KF)吸收剂实现了Cu(In,Ga)Se2(CIGSe)薄膜光伏器件效率(实验室规模)方面的突破。从基材扩散或有意沉积到CIGSe吸收剂中的Na含量会影响CIGSe吸收剂的表面电子性能。但是,有些研究表明,Na还可以钝化晶界缺陷,因此Na的作用仍未得到充分理解。用钾替代钠可有效提高效率,使KF处理成为黄铜矿领域的新“热门话题”,既要了解处理如何改变吸收剂,又要研究替代KF沉积方法之间的差异。为了提供有关这些问题的见解,利用X射线(XPS)和紫外(UPS)光电子能谱,反光发射光谱(IPES)以及X射线发射光谱(XES)来研究两个样本集。第一组(第4章)比较了KF和NaF处理对STION生产线和国家可再生能源实验室生产的吸收塔的影响。此处的目的是比较相似的碱处理如何影响不同来源的黄铜矿装置,并比较碱处理本身。第二个样本集(第5章)研究了采用不同的沉积技术结合使用KF处理的效果。使用KF处理并不能达到CIGSe薄膜器件的最新世界纪录效率,而是取代了传统的CdS缓冲液Zn(O,S)层(吸收体和透明前电极之间)的一种材料,可以在太阳光谱的较短波长范围内增加电流收集的可能性。为了进一步优化这些光伏器件,了解吸收体和缓冲层之间的相互作用至关重要。例如,记录的CdS / CIGSe器件在缓冲液/吸收剂界面处具有平坦的导带排列,而相比之下,效率较低的CdS / Cu(In,Ga)S2器件则显示出类似悬崖的导带偏移,从而阻碍了电子运输。因此,除其他方面外,确定导带偏移非常重要。当使用Zn(O,S)作为缓冲层时,应注意Zn(O,S)合金的带隙呈现出O:S比值变化时,有很强的弯曲效果。具有改变O:S比率和改变带隙的能力,因此重要的是,通过直接和独立地分析异质结,了解高效器件中Zn(O,S)/ CIGSe界面的化学和电子结构价带和导带。这是首次使用XPS,UPS,IPES和XES对界面进行无损分析,以调查具有不同缓冲层厚度的样品。将介绍界面上电子能级排列(第6章)和化学相互作用(第7章)的全面,全实验描述。

著录项

  • 作者

    Mezher Michelle;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号