首页> 外文OA文献 >Synthesis and Properties of Metallic Technetium and Technetium - Zirconium Alloys as a Radioactive Storage Waste Form to Stabilize the Technetium Waste Stream of the UREX+1 Process
【2h】

Synthesis and Properties of Metallic Technetium and Technetium - Zirconium Alloys as a Radioactive Storage Waste Form to Stabilize the Technetium Waste Stream of the UREX+1 Process

机译:金属锝和锝 - 锆合金作为放射性储存废物的合成和性能,以稳定UREX + 1工艺的锝废物流

摘要

In the AFCI program the UREX+1 process is proposed as one of the most promising technique to separate TRU (transuranic elements) form LWR spent nuclear fuel in the years to come. The application of UREX+1 results in good separation of the 5f-transuranics from the 4f-lanthanides, reduced waste volumes by eliminating the uranium content, and reduced waste package costs. Technetium-99 will be separated together with uranium and iodine within the first process steps. After the separation of uranium, technetium and iodine must be immobilized by their incorporation in a suitable waste storage form. Based on recent activities within the AFCI community, a potential candidate as waste storage form to immobilize technetium-99 is to alloy metallic Tc-99 with excess metallic zirconium. Alloying metallic Tc-99 with zirconium has potential advantages in terms of the future reuse of Tc-99 and its potential transmutation, compare to the stabilization of Tc-99 in rock-forming mineral-type oxides. The synthesis of technetium[IV] based spinel-type oxides, and perovskite-type oxides as potential candidates for geological waste storage is known since 1969. However, Tc-99 is abundant in a variety of nuclear waste streams and has a long half-life, about 200,000 years. Released into the environment, Tc-99 is extremely damaging, traveling up the food chain, and causing cancer in humans. Due to the mobility of technetates it is believed that Tc-99 could cause long-term exposure problems for geological repositories to come, after the anticipated failure if engineered barriers in 10,000 to 100,000 years. Therefore, providing a waste storage form for Tc-99 waste streams which allows transmutation of Tc-99 into stable isotopes or less toxic radioisotopes strongly promotes the AFCI program and the future separation of TRU elements by applying the UREX+1 process. However, only few thermodynamic data in the binary metal system technetium– zirconium exist, and only few data are available on the synthesis of technetium-zirconium alloys and on their potential performance under temporary or geological storage conditions.We intend to systematically investigate the binary metal system technetium-99 – zirconium for the first time. We propose to investigate the synthesis of metallic technetium as well as its alloys with zirconium. In order to provide valuable data to the AFCI program, we also propose to determine the thermodynamic equilibrium phases as well as their performance under the scenario of a geological repository. Therefore, we propose to address the following research tasks:Task 1: Synthesis of metallic Tc[0]-99 applying up to three different procedures.Task 2: Characterization of micro-structure, nano-structure and crystal structure of Tc-99 metal.Task 3: Synthesis of alloys in the binary system technetium – zirconium.Task 4: Determine thermodynamic equilibrium phases at 1000 °C to 1600 °C.Task 5: Determine the binary phase constitution (phase diagram) of technetium and zirconium.Task 6: Investigation of Tc-corrosion and Tc-leaching of binary Tc-Zr phases at elevated temperature (200 ºC) and elevated pressure (20 MPa).
机译:在AFCI计划中,建议将UREX + 1工艺作为在未来几年中将LRU乏核燃料中的TRU(超铀元素)分离的最有前途的技术之一。 UREX + 1的使用可将5f-超铀酸与4f-镧系元素很好地分离,通过消除铀含量减少废物量,并减少废物包装成本。在最初的工艺步骤中,将Technetium-99与铀和碘一起分离。铀分离后,必须通过将must和碘掺入适当的废物存储形式中使其固定化。根据AFCI社区内的最新活动,作为固定storage 99的废物存储形式的潜在候选者是将金属Tc-99与过量的金属锆合金化。与Tc-99在成岩矿物型氧化物中的稳定作用相比,将Tc-99与锆合金化具有潜在的优势,就Tc-99的未来再利用及其潜在的trans变而言。自1969年以来,就已经知道合成el基尖晶石型氧化物和钙钛矿型氧化物作为地质废物存储的潜在候选物质。但是,Tc-99在各种核废料流中含量很高,而且半衰期很长。生命,大约20万年Tc-99被释放到环境中,极具破坏性,沿着食物链向上传播,并导致人类癌症。由于tech酸盐的流动性,人们认为,如果在10,000至100,000年的时间里设计了障碍,Tc-99可能会导致地质储藏库的长期暴露问题。因此,为Tc-99废物流提供废物存储形式,允许将Tc-99转化为稳定的同位素或毒性较小的放射性同位素,这将极大地促进AFCI计划,并通过应用UREX + 1工艺进一步促进TRU元素的分离。但是,在二元金属体系tech-锆中只有很少的热力学数据,并且关于few-锆合金的合成及其在临时或地质存储条件下的潜在性能的数据也很少。我们打算系统地研究二元金属系统technetium-99 –锆第一次。我们建议研究金属tech及其与锆的合金的合成。为了向AFCI程序提供有价值的数据,我们还建议确定热力学平衡阶段及其在地质处置库情况下的性能。因此,我们建议解决以下研究任务:任务1:应用三种不同的方法合成金属Tc [0] -99。任务2:表征Tc-99金属的微观结构,纳米结构和晶体结构任务3:二元体系z-锆中合金的合成。任务4:确定1000°C至1600°C时的热力学平衡相。任务5:确定tech和锆的二元相组成(相图)。任务6 :研究了高温(200ºC)和高压(20 MPa)下二元Tc-Zr相的Tc腐蚀和Tc浸出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号