首页> 外文OA文献 >Modeling Corrosion in Oxygen Controlled LBE Systems with Coupling of Chemical Kinetics and Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003
【2h】

Modeling Corrosion in Oxygen Controlled LBE Systems with Coupling of Chemical Kinetics and Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003

机译:化学动力学和流体动力学耦合的氧控制LBE系统腐蚀模拟 - 任务五:第四季度报告09/01 / 2003-11 / 30/2003

摘要

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high oxygen concentration, an oxide layer could be formed on the steel surface (lead oxides are less stable than iron oxide), which protects it from corrosion. At low oxygen concentration, there is no oxidation and corrosion occurs by dissolution of the steel components in the liquid metal. The surface of the oxide layer in contact with the bulk flow of liquid metal may also be eroded under a high fluid velocity. Then the surface of the metal will no longer be protected because a porous oxide layer will be formed.The first subtask of this project involves using a CFD code (3-D simulation) such as STAR-CD to obtain averaged values of stream wise velocity, temperature, oxygen and corrosion product concentrations at a location deemed close to the walls of the LBE loop at more than one axial location along it. The oxygen and corrosion product inside the test loop will be simulated to participate in chemical reactions with the eutectic fluid as it diffuses through towards the walls. Details of the geometry of these loops will be obtained from scientists at LANL. These values will act as a set of starting boundary conditions to the second task.The second subtask and the more important objective of this project is to use the information supplied by the first task as boundary conditions for the kinetic modeling of the corrosion process at the internal walls of the test loop. The outcome of the modeling will be fed back to the first subtask, and the steady state corrosion/precipitation in an oxygen controlled LBE system will be investigated through iterations. The information is hoped to shed some light on the likely locations for corrosion and precipitation along the axial length of parts of the test loop.
机译:铅-铋共晶(LBE)已由俄罗斯人和欧洲科学界从先前的实验研究中确定为潜在的材料,可以用作拟议的TRP的散裂靶材和冷却剂。适当控制LBE中的氧含量可以大大减少LBE对结构钢的腐蚀。但是,仅通过非常稀疏的实验数据从逐点测试中获得了材料腐蚀性能的现有知识。科学家注意到,液态合金中溶解的氧气浓度可以控制暴露于Pb或Pb-Bi的钢的腐蚀速率。在高氧浓度下,钢表面可能会形成一层氧化层(氧化铅比氧化铁不稳定),可以保护其免受腐蚀。在低氧气浓度下,钢成分溶解在液态金属中不会发生氧化和腐蚀。与大量液态金属接触的氧化物层的表面也可能在高流体速度下被腐蚀。然后,金属表面将不再受到保护,因为会形成多孔氧化物层。该项目的第一个子任务涉及使用CFD代码(3-D模拟),例如STAR-CD,以获得流向速度的平均值,温度,氧气和腐蚀产物的浓度,该位置被认为靠近LBE回路的壁,且沿其轴向位置不止一个。将模拟测试回路内的氧气和腐蚀产物,使其随着共晶流体向壁扩散而参与化学反应。这些回路的几何形状的详细信息将从LANL的科学家那里获得。这些值将作为第二个任务的一组初始边界条件。该项目的第二个子任务和更重要的目标是,使用第一个任务提供的信息作为边界条件,以进行腐蚀过程动力学建模。测试回路的内壁。建模的结果将反馈到第一个子任务,并且将通过迭代研究氧控制LBE系统中的稳态腐蚀/沉淀。希望这些信息能对沿测试环部分轴向长度的腐蚀和沉淀的可能位置有所启发。

著录项

  • 作者

    Moujaes Samir; Chen Yitung;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号