首页> 外文OA文献 >Modeling, Fabrication, and Optimization of Niobium Cavities – Phase I: Quarterly Progress Report August 20, 2001 - November 20, 2001
【2h】

Modeling, Fabrication, and Optimization of Niobium Cavities – Phase I: Quarterly Progress Report August 20, 2001 - November 20, 2001

机译:铌腔的建模,制造和优化 - 第一阶段:季度进展报告2001年8月20日 - 2001年11月20日

摘要

Multipacting is one of the major loss mechanisms in rf superconductivity cavities for accelerators. This loss mechanism limits the maximum amount of energy/power supported by the cavities. Optimal designs have been identified in others’ studies. In practice, these designs are not easily manufactured. Chemical etching processes used to polish the cavity walls result in a nonuniform surface etch. A nonuniform surface etch will leave some unclean areas with contaminants and micron size particles. These significantly affect mutipacting. Further, a nonuniform etch will leave areas with damaged grain structure, which is not good for superconducting properties. Typically, the depth of chemical polishing etch ranges between 10 to 150 microns.It is the purpose of this study to examine the chemical etching process in the design of niobium cavities so to maximize the surface quality of the cavity walls while minimizing the multipacting losses. Single and multiple cavity cell geometries are to be investigated. Optimization techniques will be applied in search of the chemical etching processes, which will lead to cavity walls with near ideal properties.
机译:多次起搏是加速器射频超导腔中的主要损耗机制之一。这种损耗机制限制了空腔所支持的最大能量/功率。最佳设计已在其他人的研究中找到。实际上,这些设计不容易制造。用于抛光腔壁的化学蚀刻工艺导致不均匀的表面蚀刻。不均匀的表面蚀刻会留下一些带有污染物和微米级颗粒的不干净区域。这些会明显影响多用药。此外,不均匀的蚀刻将留下具有损坏的晶粒结构的区域,这对于超导性能是不利的。通常情况下,化学抛光蚀刻的深度范围在10到150微米之间。本研究的目的是检查铌腔设计中的化学蚀刻工艺,以在最大程度地降低腔室壁表面质量的同时最大程度地减少多脉冲损失。将研究单腔和多腔单元的几何形状。优化技术将用于搜索化学蚀刻工艺,这将导致腔壁具有接近理想的性能。

著录项

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号