首页> 外文OA文献 >Regulation of growth plate and articular chondrocyte differentiation : implications for longitudinal bone growth and articular cartilage formation
【2h】

Regulation of growth plate and articular chondrocyte differentiation : implications for longitudinal bone growth and articular cartilage formation

机译:生长板和关节软骨细胞分化的调节:对纵向骨生长和关节软骨形成的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Overall height and body proportions in humans are determined primarily by bone growth. Linear bone growth occurs at the growth plate, a thin layer of cartilage at the ends of long bones between the epiphysis and metaphysis. In the growth plate, resting/stem-like chondrocytes divide and give rise to proliferative chondrocytes, which, in turn, enlarge to become hypertrophic chondrocytes that ultimately undergo apoptotic cell death and are replaced by bone. Articular cartilage is an embryologically related but permanent tissue that lines the ends of long bones providing a lubricated surface for articulation and distributing loads to minimize stress on underlying subchondral bone. In both growth plate and articular cartilage, precise cell signaling mechanisms ensure normal bone growth and joint maintenance, respectively, by regulating cell differentiation, proliferation, and hypertrophy as well as matrix synthesis and turnover. A better understanding of these mechanisms has broad clinical implications for preventing, diagnosing, and treating skeletal diseases.The aim of this thesis was to study the molecular mechanisms regulating growth plate and articular chondrocyte differentiation. In this regard, similarities and differences between these structurally similar yet functionally distinct skeletal tissues were also investigated.We first explored gene expression related to the BMP signaling system in different layers of rat growth plate cartilage using manual microdissection, microarray, and real-time PCR (Paper 1). Our findings suggest a functional BMP signaling gradient across the growth plate where BMP antagonists are highly expressed in the resting and proliferative zones and BMP agonists are highly expressed in the hypertrophic zone. Gradients in BMP action may thus provide a key mechanism responsible for the spatial regulation of chondrogenesis in growth plate cartilage and thereby contribute to longitudinal bone growth.Another important mechanism is the Ihh/PTHrP feedback system, which prevents premature hypertrophic differentiation in embryonic epiphyseal cartilage. However, less is known about its organization in the growth plate after birth when the area undergoes substantial remodeling. We therefore explored Ihh/PTHrP-related gene expression in postnatal rat growth plate and surveyed Ihh activity in the Gli1-lacZ mouse growth plate (Paper 2). We found that the embryonic Ihh/PTHrP feedback system is maintained postnatally except that the source of PTHrP has shifted to a more proximal location in the resting zone. This finding provides insight into the potential role of Ihh/PTHrP signaling in growth plate senescence and fusion.Similar to the growth plate, articular cartilage is structurally organized into chondrocyte layers; however, its cellular differentiation program is not as well characterized. Thus, we explored the similarities and differences between articular and growth plate cartilage by comparing gene expression profiles of individual rat epiphyseal cartilage layers using bioinformatic approaches (Paper 3). Our findings revealed unexpected transcriptional similarities between the deeper zones of articular cartilage and the resting zone of growth plate cartilage as well as between articular cartilage superficial zone and growth plate cartilage hypertrophic zone, suggesting that in articular cartilage, superficial chondrocytes differentiate from chondrocytes in the deeper layers following a program that has some similarities to the hypertrophic differentiation program in growth plate cartilage.Based on these findings, we hypothesized that microenvironment regulates chondrocyte differentiation into either articular or growth plate cartilage. We tested this hypothesis by transplanting growth plate cartilage to the articular surface in an EGFP rat model that enabled cell tracing (Paper 4). We found that hypertrophic differentiation appeared to be inhibited in growth plate cartilage transplanted to the articular surface. The transplanted cartilage also underwent structural remodeling into articular-like cartilage, which suggests that the synovial microenvironment inhibits hypertrophic differentiation and promotes articular cartilage formation.
机译:人类的总体身高和身体比例主要取决于骨骼的生长。线性骨生长发生在生长板上,即在骨physi和干meta端之间长骨末端的软骨薄层。在生长板上,静止的/干状软骨细胞分裂并产生增生的软骨细胞,继而扩大成为肥大的软骨细胞,最终导致凋亡的细胞死亡并被骨骼所替代。关节软骨是与胚胎相关的但永久的组织,位于长骨的末端,为关节的活动提供润滑的表面并分散负荷,以最大程度地降低软骨下骨的应力。在生长板和关节软骨中,精确的细胞信号传导机制均通过调节细胞分化,增殖和肥大以及基质合成和更新来确保正常的骨骼生长和关节维持。对这些机制的更好理解对预防,诊断和治疗骨骼疾病具有广泛的临床意义。本论文的目的是研究调节生长板和关节软骨细胞分化的分子机制。在这方面,我们还研究了这些结构相似但功能不同的骨骼组织之间的异同。我们首先使用手动显微解剖,微阵列和实时PCR技术探索了大鼠生长板软骨不同层中BMP信号系统的相关基因表达。 (文件1)。我们的发现表明,整个生长板的功能性BMP信号梯度在静止和增生区高表达,而BMP激动剂在肥大区高表达。因此,BMP作用的梯度可能提供了负责生长板软骨中软骨形成的空间调节并从而促进骨纵向生长的关键机制。另一个重要的机制是Ihh / PTHrP反馈系统,该系统可防止胚胎epi骨软骨中的肥大性过早分化。但是,对该区域进行重大改建后,其在出生后生长板中的组织知之甚少。因此,我们探讨了出生后大鼠生长板中的Ihh / PTHrP相关基因表达,并调查了Gli1-lacZ小鼠生长板中的Ihh活性(论文2)。我们发现,胚胎Ihh / PTHrP反馈系统在产后得以维持,除了PTHrP的来源已转移到休息区的更近端位置。这一发现为Ihh / PTHrP信号传导在生长板衰老和融合中的潜在作用提供了见识。与生长板相似,关节软骨在结构上被组织为软骨细胞层。然而,它的细胞分化程序并没有得到很好的表征。因此,通过使用生物信息学方法比较单个大鼠rat骨软骨层的基因表达谱,我们探讨了关节软骨和生长板软骨之间的相似性和差异(论文3)。我们的发现表明,在深层软骨与生长板软骨的静息区之间以及软骨表面浅层区与生长板软骨肥大区之间存在意想不到的转录相似性,这表明在软骨中,浅层软骨细胞与深层软骨细胞有所区别根据与生长板软骨增生性分化程序有一些相似之处的程序,我们根据这些发现推测微环境调节软骨细胞向关节软骨或生长板软骨的分化。我们通过将生长板软骨移植到能够进行细胞追踪的EGFP大鼠模型的关节表面来测试了这一假设(论文4)。我们发现肥大的分化似乎在移植到关节表面的生长板软骨中受到抑制。移植的软骨也经历了结构重塑,变成关节样软骨,这表明滑膜微环境抑制了肥大性分化并促进了关节软骨的形成。

著录项

  • 作者

    Chau Michael;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号