首页> 外文OA文献 >Hydrogeochemical Characterization of the Alvord Valley Known Geothermal Resources Area, Harney County, Oregon
【2h】

Hydrogeochemical Characterization of the Alvord Valley Known Geothermal Resources Area, Harney County, Oregon

机译:俄勒冈州哈尼县alvord Valley已知地热资源区的水文地球化学特征

摘要

The Alvord Valley Known Geothermal Resources Area (KGRA) , located east of the Steens Mountain-Pueblo Mountains fault block in southeastern Oregon, is within the northern Basin and Range province. This investigation focuses on three thermal areas in the Alvord Basin: Borax Lake and the hot springs north of Borax Lake, Alvord Hot Springs and Mickey Springs.Mickey Springs and the springs north of Borax Lake are boiling at the surface (94 and 95° C, respectively). Inflow temperatures to Borax Lake, measured at a depth of 30 m, are greater than 100° C. Surface temperatures for Alvord Hot Springs and a flowing well northeast of Borax Lake are 78 and 59° C, respectively.Thermal fluids issue from Quaternary lacustrine and alluvial deposits. While silica sinter deposits are present at all three thermal areas, sinter is not presently being deposited. Minor calcite is being deposited at the springs north of Borax Lake. The springs discharge from N to NEstriking, high-angle, basin-bounding faults along the base of Steens Mountain and Mickey Mountain and NE-striking intrabasinal faults south of Alvord Lake.The thermal waters are dilute sodium-bicarbonate waters with significant amounts of sulfate and chloride. Conservative element plots (B, F, and Li vs. Cl) indicate good correlation between Cl and the other conservative elements. These correlations could result from mixing of thermal water with a dilute cold water or fluid evolution due to increased fluid-rock interaction, evaporation, and steam loss due to boiling. The small variations in chloride concentrations of thermal fluids during the sampling period argues against mixing of thermal fluids with cold water. The geothermal system is a hot-water rather than a vapordominated system.The ỎD content of thermal fluids is similar to the ỎD content of local cold water wells, springs, basinal pore fluids at a depth of 4 to 5 m, and perennial streams. Similarities in ỎD values indicate recharge for geothermal fluids is precipitation from the Steens Mountain fault block. The Ỏ18 content of thermal fluids is shifted 2 to 3°/oo to the right of the world meteoric water line indicating fluid-rock interaction at elevated temperatures in the reservoir.Tritium contents indicate relatively long residence times and/or low-velocity circulation of meteoric water through basement rocks. Values range from 0 to 0.25 T.U. The application of two end-member models, which calculate fluid residence times, generate a minimum of 57 years and a maximum of greater than 10,000 years.Estimated reservoir temperatures based on cation and silica geothermometry are between 170 and 200°C. Oxygensulfate isotope geothermometer estimates indicate reservoir temperatures between 198 and 207u27 C for Borax Lake and Alvord Hot Springs. Mickey Springs and a flowing well northeast of Borax Lake yield temperature estimates of 168 and 150° C, respectively. These values indicate partial reequilibration of the isotopic system.The Ỏ13C contents of carbon dioxide and methane of gas discharges from the thermal areas are similar to geothermal fluids from other sites. The Ỏ13C of methane indicate u22normalu22 geothermal methane for Alvord Hot Springs and Mickey Springs (-27.8 and -27.6, respectively). The Ỏ13C of CH4 for springs north of Borax Lake (-33.6) indicates a small amount of thermogenic methane may be contributed by thermal alteration of organics in basinal sediments. The Ỏ13C contents for C02 at Alvord Hot Springs and Borax Lake are within the range expected for atmospheric, fumarolic, or mantle derived C02 (-6.5 and -6.6, respectively). The Ỏ13C content of C02 from Mickey Springs is isotopically lighter than gas released from fumaroles or the mantle (-9.4). N2/Ar ratios for Mickey Springs and Borax Lake gases (39.2 and 40.8, respectively) indicate interaction with airsaturated ground water during flow through the the zone of aeration. Helium is enriched relative to Ar and N2 in gas discharges from Alvord Hot Springs, indicating longer fluid residence times and/or increased crustal interaction at high temperatures.Ratios of B/Cl indicate the fluid reservoir is hosted in volcanic rocks. The Li/Cs ratios for the Borax Lake thermal area are consistent with a reservoir located in rhyoli tic rocks. The 228Ra/226Ra content of Borax Lake thermal fluids (1.14 ± 0.13 dpm/kg) indicates interaction with volcanic rocks for Borax Lake. The 228Ra/226Ra content of thermal fluids from Alvord Hot Springs and Mickey Springs (0.38~0.02 and 0.17 ~ 0.09) are lower than those expected for volcanic rocks and may indicate local uranium accumulation in the reservoir or zones of upflow. The 87Sr / 86Sr values for thermal waters and stratigraphic uni ts indicate the fluid reservoir is located in volcanic rocks beneath Steens Basalt. Equilibration of fluids in these units argues for thermal water circulation depths of 2 to 2.5 km in the Borax Lake thermal area, greater than 3 km in the Alvord Hot Springs area and 1 to 2 km in the Mickey Springs area.Data presented in this study do not preclude a single large deep reservoir system discharging at these three thermal areas in the Alvord basin. Differences in the chemical and isotopic composition of discharge from the three thermal areas are produced during upf low from the reservoir. During upflow, thermal waters follow a complex pathway of vertical and lateral fractures which includes short residence times in shallow reservoirs before reaching the surface. Boiling, mixing with condensate, oxidation, mixing with 1-3% tritium-bearing, near-surface cold water, relative differences in flow rate and volume, and slow cooling without vigorous boiling are processes that modify fluid composition during upflow from the deep geothermal reservoir.
机译:Alvord山谷已知地热资源区(KGRA)位于俄勒冈州东南部的Steens Mountain-Pueblo Mountains断块以东,位于北部盆地和Range省内。这项研究集中在Alvord盆地的三个热区:Borax湖和Borax湖以北的温泉,Alvord温泉和Mickey Springs.Mickey Springs和Borax湖以北的温泉在地表沸腾(94和95°C , 分别)。深度为30 m的Borax湖的入流温度大于100°C.Alvord温泉的地表温度和Borax Lake东北部的流动井的温度分别为78°C和59°C。和冲积物。尽管在所有三个热区都存在二氧化硅烧结矿,但目前尚未沉积烧结矿。小方解石沉积在硼砂湖北部的泉水上。泉水从N排放到沿Steens山和Mickey山底部的高角度,盆地边界断层以及Alvord湖以南的NE向基底内断层排放。温泉水是稀碳酸氢钠水,含大量硫酸盐。和氯化物。保守元素图(B,F和Li与Cl的关系)表明Cl与其他保守元素之间具有良好的相关性。这些相关性可能是由于热水与稀冷水混合或由于沸腾作用引起的流体-岩石相互作用,蒸发和蒸汽损失增加而导致的流体逸出所引起的。在采样期间,导热液中氯化物浓度的微小变化表明,导热液与冷水不能混合。地热系统是热水系统,而不是蒸汽控制系统。热流体的ỎD含量类似于局部冷水井,泉水,4至5m深度的盆地孔隙流体和多年生水流的ỎD含量。 ỎD值的相似性表明地热流体的补给是来自Steens Mountain断块的降水。 Ỏ18含量的热流体向世界流水线的右侧偏移2至3°/ oo,表明储层温度升高时流体与岩石之间的相互作用。indicate含量指示了较长的停留时间和/或低速循环地下室岩石流过的水。值范围从0到0.25T.U。运用两个计算流体停留时间的末端构件模型,它们产生的最小值为57年,最大值为10,000年以上。基于阳离子和二氧化硅地热法的估算储层温度在170至200°C之间。硫酸氧同位素地热仪的估算值表明,硼砂湖和Alvord温泉的储层温度在198至207 u27 C之间。米奇斯普林斯(Mickey Springs)和北硼砂湖(Borax Lake)东北部的一口流动井的温度估计分别为168和150°C。这些值表明了同位素系统的部分重新平衡。热区气体排放中二氧化碳和甲烷的Ỏ13C含量与其他位置的地热流体相似。甲烷的13 C表示Alvord温泉和Mickey Springs的地热甲烷(分别为-27.8和-27.6)。硼砂湖以北的泉水CH4的Ỏ13C(-33.6)表明少量热生甲烷可能是由盆地沉积物中有机物的热变化引起的。 Alvord Hot Springs和Borax Lake的CO2的13 C含量在大气,火山岩或地幔衍生的CO2的预期范围内(分别为-6.5和-6.6)。来自米奇泉(Mickey Springs)的CO2的13 C含量在同位素上比从喷气孔或地幔释放的气体(-9.4)轻。 Mickey Springs和Borax Lake气体的N2 / Ar比(分别为39.2和40.8)表明在流过通气区的过程中与空气饱和的地下水相互作用。氦气相对于Ar和N2在Alvord温泉的气体排放物中富集,表明在高温下流体停留时间更长和/或地壳相互作用增加.B / Cl的比值表明流体储集层位于火山岩中。硼砂湖热区的Li / Cs比与位于流纹岩中的储层一致。硼砂湖热流体的228Ra / 226Ra含量(1.14±0.13 dpm / kg)表明与硼砂湖的火山岩相互作用。 Alvord温泉和Mickey Springs的热流体的228Ra / 226Ra含量(0.38〜0.02和0.17〜0.09)低于火山岩的预期值,这可能表明铀在储层或上流带中的局部聚集。热水和地层单位的87Sr / 86Sr值表明,储层位于Steens Basalt下的火山岩中。这些单元中的流体平衡证明了硼砂湖热区的热水循环深度为2至2.5 km,在Alvord温泉区大于3 km,在Mickey Springs区大于1至2 km。本研究提出的数据并不排除在Alvord盆地的这三个热区排放单个大型深层储层系统。在三个高热区的排放物的化学和同位素组成上的差异是在储层上升期间产生的。在上流期间,热水沿垂直和横向裂缝的复杂路径行进,包括在到达地表之前在浅水库中停留时间短。沸腾,与冷凝液混合,氧化,与1-3%含tri的混合,近地表冷水,流量和体积的相对差异以及缓慢冷却而不剧烈沸腾的过程会在深层地热的上升过程中改变流体成分水库。

著录项

  • 作者

    St. John Anna Maria;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号