首页> 外文OA文献 >Application of LRFD Geotechnical Principles for Pile Supported Bridges in Oregon: Phase 1
【2h】

Application of LRFD Geotechnical Principles for Pile Supported Bridges in Oregon: Phase 1

机译:LRFD岩土工程原理在俄勒冈州桩承式桥梁中的应用:第一阶段

摘要

Bridge foundations must be designed based on acceptable risks of failure. To secure rapid implementation of Load Resistance Factor Design (LRFD) principles for foundation design, the American Association of State Highway and Transportation Officials (AASHTO) and the Federal Highway Administration (FHWA) are requiring their use through AASHTO code. The Bridge Section of the Oregon Department of Transportation (ODOT) has responsibility for satisfactory design of all the bridge structures across the state’s highway system. The widespread geotechnical adoption of the LRFD code throughout state DOTs has been difficult in the case of deep foundations due to regional differences and in some cases a lack of any close match to DOT foundation practices. This lack of matching stems from the source research conducted on which the code is based, documented as NCHRP 507. For ODOT, the evaluation of nominal axial static capacity for each driven pile in the field is conducted by dynamic methods and AASHTO offers resistance factors for these techniques. ODOT typically uses the wave equation software (WEAP) applied at the end of initial driving, EOID, and occasionally at the beginning of pile restrike (BOR) to capture increases in capacity from set-up. This study reports that, based on past and new surveys, ODOT practice is reasonably typical for DOT practice in sands, silts, and clays. The AASHTO resistance factor, φ, for WEAP is at EOID and is too low for the efficient design of piles to match the likely probabilities of pile failure. The survey of Northwest state DOTs revealed that 80% of the DOTs believe that a φ of 0.4 is conservative and 37.5 % do not use the AASHTO-sanctioned φ of 0.4. Matching LRFD to allowable stress design (ASD) by direct calibration for a single pile, without any reported capacity bias, sets φ as 0.55 to match the ASD factor of safety of 2.5. An ODOT case history of a recently completed pilesupported bridge designed and constructed to FHWA and AASHTO ASD standards in use at that time, shows the number of piles at the bent studied would be doubled under new AASHTO requirements. This suggests the standard will add considerable pile foundation costs to all new bridges. This cost increase is a strong incentive to complete statistical recalibration of GRLWEAP dynamic capacity resistance value in a Phase 2 of this study.
机译:桥梁基础必须基于可接受的故障风险进行设计。为确保基础设计的荷载阻力因数设计(LRFD)原则的快速实施,美国国家公路和运输官员协会(AASHTO)和联邦公路管理局(FHWA)要求通过AASHTO代码进行使用。俄勒冈州交通运输部(ODOT)的桥梁部门负责对该州高速公路系统中所有桥梁结构的令人满意的设计。在深基础的情况下,由于区域差异以及在某些情况下与DOT基础实践缺乏任何紧密匹配,很难在整个州DOT中广泛采用LRFD代码进行岩土工程。这种缺乏匹配的原因是源代码基于NCHRP 507进行的源研究。对于ODOT,现场的每个打入桩的标称轴向静容量的评估都是通过动态方法进行的,而AASHTO为这些技术。 ODOT通常使用在初始驱动结束时使用的波动方程软件(WEAP),EOID,偶尔在桩再起桩(BOR)开始时使用,以捕获设置后容量的增加。这项研究报告指出,根据过去和新的调查,ODOT做法对于在沙子,粉砂和粘土中的DOT做法是相当典型的。 WEAP的AASHTO阻力系数φ为EOID,对于有效设计桩而无法匹配桩失效的可能概率而言,该系数太低。西北州DOT的调查显示,80%的DOT认为φ为0.4是保守的,而37.5%的人未使用AASHTO批准的0.4。通过直接校准单个桩使LRFD与容许应力设计(ASD)相匹配,而没有任何报告的容量偏差,将φ设置为0.55以匹配2.5的ASD安全系数。根据当时使用的FHWA和AASHTO ASD标准设计和建造的最近完成的桩支撑桥梁的ODOT案例历史表明,在新的AASHTO要求下,研究弯头的桩数将翻倍。这表明该标准将为所有新桥梁增加可观的桩基成本。在本研究的第2阶段中,此成本增加强烈地推动了GRLWEAP动态容量阻力值的统计重新校准。

著录项

  • 作者

    Smith Trevor D.; Dusicka Peter;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 21:05:34

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号