首页> 外文OA文献 >Improving Robustness of Hydrologic Parameter Estimation by the Use of Moving Block Bootstrap Resampling
【2h】

Improving Robustness of Hydrologic Parameter Estimation by the Use of Moving Block Bootstrap Resampling

机译:利用移动块Bootstrap重采样提高水文参数估计的鲁棒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modeling of natural systems typically involves conceptualization and parameterization to simplify the representations of the underlying process. Objective methods for estimation of the model parameters then require optimization of a cost function, representing a measure of distance between the observations and the corresponding model predictions, typically by calibration in a static batch mode and/or via some dynamic recursive optimization approach. Recently, there has been a focus on the development of parameter estimation methods that appropriately account for different sources of uncertainty. In this context, we introduce an approach to sample the optimal parameter space that uses nonparametric block bootstrapping coupled with global optimization. We demonstrate the applicability of this procedure via a case study, in which we estimate the parameter uncertainty resulting from uncertainty in the forcing data and evaluate its impacts on the resulting streamflow simulations.
机译:自然系统的建模通常涉及概念化和参数化,以简化基础过程的表示。然后,用于估计模型参数的客观方法需要优化成本函数,以表示观测值与相应的模型预测之间的距离的度量,通常通过在静态批处理模式下进行校准和/或通过某种动态递归优化方法进行。近来,人们关注于适当考虑不同不确定性来源的参数估计方法的发展。在这种情况下,我们引入一种使用非参数块自举结合全局优化来采样最佳参数空间的方法。我们通过一个案例研究证明了该程序的适用性,在该案例中,我们估算了由强迫数据中的不确定性引起的参数不确定性,并评估了其对最终流量模拟的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号