首页> 外文OA文献 >Modeling the Impact of Traffic Conditions on the Variability of Mid-Block Roadside PM2.5 on an Urban Arterial
【2h】

Modeling the Impact of Traffic Conditions on the Variability of Mid-Block Roadside PM2.5 on an Urban Arterial

机译:交通条件对中段路边pm2.5变化对城市主干道影响的模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modeling Impact of Traffic Conditions on Variability of Midblock Roadside Fine Particulate Matter Concentrations on an Urban Arterial: This paper presents an innovative modeling of fine particulate matter (PM2.5) concentrations as a function of very high resolution meteorological and traffic data. Peak period measurements were taken at a mid-block roadside location on an urban arterial commuter roadway. To capture the impact of dynamic traffic conditions, data were analyzed at 10-second intervals, with substantially higher resolution than typical roadside air quality study designs. Particular attention was paid to changes in traffic conditions, including fleet mix, queuing and vehicle platooning over the course of the study period, and the effect of these changes on PM2.5. Significant correlations were observed between vehicle platoons and increases in PM2.5 concentrations. Traffic state analysis was employed to determine median PM2.5 levels before and after the onset of congestion. A multivariate regression model was estimated to determine significant PM2.5 predictors while controlling for autocorrelation. Significance was found not only in the simultaneous traffic variables but also in lagged traffic variables; additionally, the effects of vehicle types and wind direction were quantified. Modeling results indicate that traffic conditions and vehicle type do have a significant impact on roadside PM2.5 concentrations. For instance, the addition of one heavy vehicle was shown to increase PM2.5 concentrations by 2.45% when wind blew across the roadway before reaching the monitoring location. This study serves as a demonstration of the abilities of very high resolution data to identify the effects of relatively minute changes in traffic conditions on air pollutant concentrations.
机译:交通条件对中段路边细颗粒物浓度对城市动脉变异性的影响的建模:本文提出了作为高分辨率气象和交通数据函数的细颗粒物(PM2.5)浓度的创新模型。高峰期的测量是在城市通勤车道的中段路边位置进行的。为了捕获动态交通状况的影响,以10秒为间隔对数据进行了分析,其分辨率远高于典型的路边空气质量研究设计。在研究期间,特别注意交通状况的变化,包括车队混合,排队和车辆排队以及这些变化对PM2.5的影响。在车辆排与PM2.5浓度增加之间观察到显着相关性。在交通拥堵发生之前和之后,使用交通状态分析来确定PM2.5的中位数。估计多元回归模型以确定重要的PM2.5预测因子,同时控制自相关。不仅在同时交通量变量中,而且在滞后交通量变量中都发现了重要意义;另外,量化了车辆类型和风向的影响。建模结果表明,交通状况和车辆类型确实会对路边PM2.5浓度产生重大影响。例如,当风吹过车道到达监测地点之前,增加一辆重型车辆可将PM2.5浓度提高2.45%。这项研究证明了高分辨率数据识别交通状况相对微小变化对空气污染物浓度的影响的能力。

著录项

  • 作者

    Moore Adam;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号