首页> 外文OA文献 >A Study on Adaptive Particle Swarm Optimizationudfor Solving Vehicle Routing Problems
【2h】

A Study on Adaptive Particle Swarm Optimizationudfor Solving Vehicle Routing Problems

机译:自适应粒子群优化算法研究解决车辆路径问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a study on an adaptive version of particle swarm optimization (PSO) algorithmfor solving vehicle routing problems (VRPs). Recently, PSO has been showing promising results in solvingmany optimization problems include VRP. There are some parameters that need to be set in order to obtain agood performance of the PSO algorithm. However, finding the best set of parameters that is good for allproblem cases is not an easy task. Many experiments must be performed to set the parameters and yet there isno guarantee that the best obtained parameter set will provide consistently good algorithm performance whenit is applied to a new problem cases. Hence, a novel idea to have a self-adaptive PSO, that can adapt itsparameters automatically whenever it is applied to solve a problem instance, is an alternative way toovercome this situation. The adaptive version of PSO proposed in this paper has additional capability to selfadaptits inertia weight (w), one of the key PSO parameter, based on the velocity index of the swarm, thesearching agents in PSO. The inertia weight is controlled so that the balance between exploration andexploitation phases of the swarm is maintained, since a better balance of these phases is often mentioned asthe key to a good performance of PSO. The performance of this adaptive PSO is evaluated for solving VRPinstances and is compared with the existing application of PSO for VRP. The computational experiment showsthat the adaptive version of PSO is able to provide better solution than the existing non-adaptive PSO withslightly slower computational time.
机译:本文提出了一种用于解决车辆路径问题(VRP)的自适应粒子群优化(PSO)算法的研究。最近,PSO在解决包括VRP在内的许多优化问题方面已显示出令人鼓舞的结果。为了获得PSO算法的良好性能,需要设置一些参数。但是,找到适合所有问题情况的最佳参数集并不是一件容易的事。必须执行许多实验来设置参数,但不能保证将最佳使用的参数集应用于新的问题案例时,将始终提供良好的算法性能。因此,一种具有自适应PSO的新颖想法是可以克服这种情况的另一种方法,该PSO每当应用于解决问题实例时就可以自动调整其参数。本文提出的自适应粒子群优化算法具有额外的能力,可以根据粒子群的速度指数自适应搜索惯性权重(w),惯性权重是粒子群优化算法的关键参数之一。控制惯性权重,以便保持群的探索阶段和开发阶段之间的平衡,因为经常提到这些阶段之间更好的平衡是PSO良好性能的关键。评估了该自适应PSO的性能以解决VRP实例,并将其与PSO的现有VRP应用程序进行了比较。计算实验表明,与现有的非自适应PSO相比,自适应版本的PSO能够提供更好的解决方案,并且计算时间稍慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号