首页> 外文OA文献 >A hybrid neural network based speech recognition system for pervasive environments
【2h】

A hybrid neural network based speech recognition system for pervasive environments

机译:一种基于混合神经网络的普适环境语音识别系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the major drawbacks to using speech as the input to any pervasive environment is the requirement to balance accuracy with the high processing overheads involved. This paper presents an Arabic speech recognition system (called UbiqRec), which address this issue by providing a natural and intuitive way of communicating within ubiquitous environments, while balancing processing time, memory and recognition accuracy. A hybrid approach has been used which incorporates spectrographic information, singular value decomposition, concurrent self-organizing maps (CSOM) and pitch contours for Arabic phoneme recognition. The approach employs separate self-organizing maps (SOM) for each Arabic phoneme joined in parallel to form a CSOM. The performance results confirm that with suitable preprocessing of data, including extraction of distinct power spectral densities (PSD) and singular value decomposition, the training time for CSOM was reduced by 89%. The empirical results also proved that overall recognition accuracy did not fall below 91%.
机译:使用语音作为任何普遍环境的输入的主要缺点之一是要求在准确性与所涉及的高处理开销之间取得平衡。本文介绍了一种阿拉伯语语音识别系统(称为UbiqRec),它通过提供一种自然而直观的方式在无处不在的环境中进行通信,同时平衡了处理时间,内存和识别精度,解决了这个问题。已经使用了一种混合方法,该方法结合了光谱信息,奇异值分解,并发自组织图(CSOM)和音高等高线,用于阿拉伯音素识别。该方法为并行连接以形成CSOM的每个阿拉伯音素采用单独的自组织映射(SOM)。性能结果证实,通过对数据进行适当的预处理(包括提取不同的功率谱密度(PSD)和奇异值分解),CSOM的训练时间减少了89%。实验结果还证明,总体识别准确率未低于91%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号