首页> 外文OA文献 >Biochemical basis for hydrolysis of organophosphorus by a marine bacterial prolidase
【2h】

Biochemical basis for hydrolysis of organophosphorus by a marine bacterial prolidase

机译:Biochemical basis for hydrolysis of organophosphorus by a marine bacterial prolidase

摘要

Extensive application of synthesized organophosphorus compounds (OPs) leads to pollutant accumulation and enhanced eco-toxicity. Hydrolysis of phosphotriester bonds catalyzed by evolved microbial enzymes is a key step for detoxification of OPs. Here, a new marine bacterial prolidase OPAA4301 exhibiting promiscuous phosphotriesterase activity was isolated and systematically characterized. The homo-tetrameric enzyme OPAA4301 can catalyze the hydrolysis of both amido bond and phosphotriester bond. Manganese ions were observed to be essential for its catalytic integrity, and in vitro substitution of manganese ions by different metal cofactors led to decreased activity. We also revealed cooperation pattern of metal ligands and substrate-binding residues on OP hydrolysis by mutational analysis. Metal-binding sites together with Arg418 in the large-binding pocket of the enzyme were found to be indispensable for catalytic ability. Substitution mutation of small- and large-binding pocket residues caused significant variation in phosphotriesterase activity, and leaving group sites appeared to be involved in the catalytic process as substrate affinity regulators. Our study gave an overall biochemical understanding on the organophosphorus hydrolysis pattern of the newly identified marine bacterial prolidase and provided ideas for protein engineering to expand its application in the bioremediation field. (C) 2016 Elsevier Ltd. All rights reserved.
机译:合成有机磷化合物(OPs)的广泛应用导致污染物积累和增强的生态毒性。进化的微生物酶催化的磷酸三酯键的水解是OP排毒的关键步骤。在这里,分离并系统表征了新的海洋细菌脯氨酸蛋白酶OPAA4301,具有混杂的磷酸三酯酶活性。同四聚酶OPAA4301可以催化酰胺键和磷酸三酯键的水解。观察到锰离子对于其催化完整性是必不可少的,并且锰离子在体外被不同的金属辅助因子取代导致活性降低。我们还通过突变分析揭示了OP水解中金属配体和底物结合残基的协作模式。发现该酶的大结合口袋中的金属结合位点与Arg418一起对于催化能力是必不可少的。小和大结合口袋残基的取代突变引起磷酸三酯酶活性的显着变化,并且离开基团位点似乎作为底物亲和力调节剂参与了催化过程。我们的研究对新近鉴定的海洋细菌蛋白酶蛋白的有机磷水解模式提供了全面的生化理解,并为蛋白质工程扩展其在生物修复领域的应用提供了思路。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号