首页> 外文OA文献 >Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation
【2h】

Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation

机译:精确回忆空间中无法实现的区域及其对实证评估的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Precision-recall (PR) curves and the areas under them are widely used to summarize machine learning results, especially for data sets exhibiting class skew. They are often used analogously to ROC curves and the area under ROC curves. It is known that PR curves vary as class skew changes. What was not recognized before this paper is that there is a region of PR space that is completely unachievable, and the size of this region depends only on the skew. This paper precisely characterizes the size of that region and discusses its implications for empirical evaluation methodology in machine learning.
机译:精确召回(PR)曲线及其下的区域广泛用于总结机器学习结果,尤其是对于表现出类偏斜的数据集。它们通常类似于ROC曲线和ROC曲线下方的区域使用。众所周知,PR曲线随类别偏斜的变化而变化。在本文之前没有意识到的是,有一个PR空间是完全无法实现的,并且该区域的大小仅取决于偏斜。本文精确地描述了该区域的大小,并讨论了其对机器学习中经验评估方法的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号