首页> 外文OA文献 >In silico bone mechanobiology: modeling a multifaceted biological system.
【2h】

In silico bone mechanobiology: modeling a multifaceted biological system.

机译:计算机骨力学生物学:模拟多方面的生物系统。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever-increasing complexity of computational mechanobiology models will inevitably move the field toward patient-specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. For further resources related to this article, please visit the WIREs website.
机译:机械生物学是研究机械负荷通过向细胞发出信号对生物过程的影响的方法,对骨骼组织响应机械刺激适应其结构的固有能力至关重要。计算建模对新生的骨力学生物学领域的巨大贡献是无可争辩的,它有助于解释实验结果并确定了新的研究途径。的确,计算建模的进步刺激了该领域的发展,为诸如骨折愈合等事件期间从机械响应到单个细胞的负荷到组织分化的问题提供了新的思路。迄今为止,计算机硅骨力学已经普遍采用还原性方法来尝试回答离散的生物学研究问题,该领域的研究大致分为两大类:(1)预测骨骼组织力学生物学变化的机械调节算法和(2)模型研究细胞力学生物学。未来的模型可能会利用计算能力和技术的进步,从而允许多尺度和多物理场建模将许多相互独立但相关的生物学响应联系在一起,作为更大的系统生物学方法的一部分,以进一步阐明骨骼力学生物学。最后,尽管计算力学生物学模型的日趋复杂将不可避免地将这一领域推向临床上针对患者的模型,但是要确定可以安全地将其用于临床目的的环境,仍然需要将计算和生物学模型广泛地结合起来。实验技术应用于体外和体内应用。有关本文的更多资源,请访问WIREs网站。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号