首页> 外文OA文献 >Group-wise similarity registration of point sets using Student's t-mixture model for statistical shape models
【2h】

Group-wise similarity registration of point sets using Student's t-mixture model for statistical shape models

机译:使用学生的t-混合模型对统计形状模型进行分组相似性登记

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A probabilistic group-wise similarity registration technique based on Student's t-mixture model (TMM) and a multi-resolution extension of the same (mr-TMM) are proposed in this study, to robustly align shapes and establish valid correspondences, for the purpose of training statistical shape models (SSMs). Shape analysis across large cohorts requires automatic generation of the requisite training sets. Automated segmentation and landmarking of medical images often result in shapes with varying proportions of outliers and consequently require a robust method of alignment and correspondence estimation. Both TMM and mrTMM are validated by comparison with state-of-the-art registration algorithms based on Gaussian mixture models (GMMs), using both synthetic and clinical data. Four clinical data sets are used for validation: (a) 2D femoral heads (K= 1000 samples generated from DXA images of healthy subjects); (b) control-hippocampi (K= 50 samples generated from T1-weighted magnetic resonance (MR) images of healthy subjects); (c) MCI-hippocampi (K= 28 samples generated from MR images of patients diagnosed with mild cognitive impairment); and (d) heart shapes comprising left and right ventricular endocardium and epicardium (K= 30 samples generated from short-axis MR images of: 10 healthy subjects, 10 patients diagnosed with pulmonary hypertension and 10 diagnosed with hypertrophic cardiomyopathy). The proposed methods significantly outperformed the state-of-the-art in terms of registration accuracy in the experiments involving synthetic data, with mrTMM offering significant improvement over TMM. With the clinical data, both methods performed comparably to the state-of-the-art for the hippocampi and heart data sets, which contained few outliers. They outperformed the state-of-the-art for the femur data set, containing large proportions of outliers, in terms of alignment accuracy, and the quality of SSMs trained, quantified in terms of generalization, compactness and specificity.
机译:在这项研究中,提出了一种基于学生t混合模型(TMM)及其相同分辨率的多分辨率扩展(mr-TMM)的概率分组相似性配准技术,目的是可靠地对齐形状并建立有效的对应关系训练统计形状模型(SSM)。大型队列的形状分析需要自动生成必要的训练集。医学图像的自动分割和界标通常会导致形状具有不同比例的异常值,因此需要一种可靠的对齐和对应估计方法。 TMM和mrTMM均通过与基于高斯混合模型(GMM)的最新注册算法进行了比较,并使用了合成数据和临床数据进行了验证。四个临床数据集用于验证:(a)2D股骨头(K =从健康受试者的DXA图像生成的1000个样本); (b)对照海马体(从健康受试者的T1加权磁共振(MR)图像生成的K = 50个样本); (c)MCI-海马体(K = 28个样本,来自诊断为轻度认知障碍的患者的MR图像); (d)包括左,右心室心内膜和心外膜的心形(K = 30个样本的短轴MR图像生成的样本:10个健康受试者,10个被诊断为肺动脉高压的患者和10个被诊断为肥厚型心肌病的患者)。在涉及合成数据的实验中,所提出的方法在配准精度方面明显优于最新技术,其中mrTMM比TMM有了显着改进。根据临床数据,这两种方法的性能均与海马和心脏数据集的最新水平相当,后者几乎没有异常值。他们在股骨数据集方面的表现超越了最新技术,在对齐精度以及训练的SSM的质量(从泛化,紧凑性和特异性方面进行量化)方面,都包含了很大一部分异常值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号