首页> 外文OA文献 >Should We Use the First- or Second-order Formulation with Spectral Elements for Seismic Modelling?
【2h】

Should We Use the First- or Second-order Formulation with Spectral Elements for Seismic Modelling?

机译:我们应该使用带频谱元素的一阶或二阶公式进行地震建模吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The second-order formulation of the wave equation is often used for spectral-element discretizations. For some applications, however, a first-order formulation may be desirable. It can, in theory, provide much better accuracy in terms of numerical dispersion if the consistent mass matrix is used and the degree of the polynomial basis functions is odd. However, we find in the 1-D case that the eigenvector errors for elements of degree higher than one are larger for the first-order than for the second-order formulation. These errors measure the unwanted cross talk between the different eigenmodes. Since they are absent for the lowest degree, that linear element may perform better in the first-order formulation if the consistent mass matrix is inverted. The latter may be avoided by using one or two defect-correction iterations. Numerical experiments on triangles confirm the superior accuracy of the first-order formulation. However, with a delta-function point source, a large amount of numerical noise is generated. Although this can be avoided by a smoother source representation, its higher cost and the increased susceptibility to numerical noise make the second-order formulation more attractive.
机译:波动方程的二阶公式通常用于频谱元素离散化。但是,对于某些应用,一级配方可能是理想的。从理论上讲,如果使用一致的质量矩阵并且多项式基函数的阶数为奇数,则可以在数值分散方面提供更好的精度。但是,我们发现在一维情况下,一阶的元素的特征向量误差一阶大于二阶公式。这些误差测量了不同本征模式之间的有害串扰。由于线性度最低,因此如果一致的质量矩阵倒置,则线性元素在一阶公式中的效果可能会更好。可以通过使用一个或两个缺陷校正迭代来避免后者。在三角形上进行的数值实验证实了一阶公式的优越精度。但是,在使用三角函数点源的情况下,会产生大量的数值噪声。尽管可以通过更平滑的源表示来避免这种情况,但是其较高的成本和对数字噪声的敏感性增加使二阶公式更具吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号