首页> 外文OA文献 >Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping
【2h】

Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping

机译:构建信息贝叶斯地图先验:一种应用于室内占用网格映射的多目标优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of simultaneous localisation and mapping (SLAM) has been addressed in numerous ways with different approaches aiming to produce faster, more robust solutions that yield consistent maps. This focus, however, has resulted in a number of solutions that perform poorly in challenging real life scenarios. In order to achieve improved performance and map quality this article proposes a novel method to construct informative Bayesian mapping priors through a multi-objective optimisation of prior map design variables defined using a source of prior information. This concept is explored for 2D occupancy grid SLAM, constructing such priors by extracting structural information from architectural drawings and identifying optimised prior values to assign to detected walls and empty space. Using the proposed method a contextual optimised prior can be constructed. This prior is found to yield better quantitative and qualitative performance than the commonly used non-informative prior, yielding an increase of over 20% in the F2 metric. This is achieved without adding to the computational complexity of the SLAM algorithm, making it a good fit for time critical real life applications such as search and rescue missions.
机译:同时定位和地图绘制(SLAM)问题已通过多种方法解决,目的是为了产生速度更快,功能更强大的解决方案,从而生成一致的地图。但是,这种关注导致产生了许多解决方案,这些解决方案在具有挑战性的现实生活场景中表现不佳。为了获得改进的性能和地图质量,本文提出了一种通过对使用先验信息源定义的先验地图设计变量进行多目标优化来构造信息贝叶斯先验地图的新颖方法。针对2D占用栅格SLAM探索了这一概念,通过从建筑图纸中提取结构信息并标识优化的先验值以分配给检测到的墙壁和空白空间来构造先验。使用所提出的方法,可以构造上下文优化的先验。发现此先验比常规的非信息先验具有更好的定量和定性性能,F2度量标准的提高超过20%。无需增加SLAM算法的计算复杂度即可实现这一点,使其非常适合时间紧迫的现实生活应用(例如搜索和救援任务)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号