首页> 外文OA文献 >A MUSIC-based method for SSVEP signal processing
【2h】

A MUSIC-based method for SSVEP signal processing

机译:一种基于mUsIC的ssVEp信号处理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100 %. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.
机译:近年来,关于脑计算机接口(BCI)的研究成为热点,因为它为残疾人提供了与外界交流的好处。与其他BCI技术相比,基于稳态视觉诱发电位(SSVEP)的BCI具有更高的信噪比和更高的信息传输速率,因此得到了更广泛的应用。本文提出了一种基于多信号分类的多维SSVEP特征提取方法。来自四个电极的2秒数据周期达到了出色的准确率,包括空闲状态检测。在某些异步模式实验中,识别精度高达100%。实验结果表明,该方法具有良好的频率分辨率。在大多数情况下,识别精度要高于规范相关分析,这是用于多通道SSVEP信号处理的典型方法。此外,在非屏蔽环境中,虚拟键盘可以成功地由不同主体控制,这证明了该方法在实际应用中进行多维SSVEP信号处理的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号