首页> 外文OA文献 >Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models
【2h】

Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models

机译:时变系数实现波动率模型的非参数估计与预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a new specification for the heterogeneous autoregressive (HAR) model for the realized volatility of S&P 500 index returns. In this modelling framework, the coefficients of the HAR are allowed to be time-varying with unspecified functional forms. The local linear method with the cross-validation (CV) bandwidth selection is applied to estimate the time-varying coefficient HAR (TVC-HAR) model, and a bootstrap method is used to construct the point-wise confidence bands for the coefficient functions. Furthermore, the asymptotic distribution of the proposed local linear estimators of the TVC-HAR model is established under some mild conditions. The results of the simulation study show that the local linear estimator with CV bandwidth selection has favorable finite sample properties. The outcomes of the conditional predictive ability test indicate that the proposed nonparametric TVC-HAR model outperforms the parametric HAR and its extension to HAR with jumps and/or GARCH in terms of multi-step out-of-sample forecasting, in particular in the post-2003 crisis and 2007 GFC periods, during which financial market volatilities were unduly high.
机译:本文介绍了针对标准普尔500指数收益的已实现波动性的异质自回归(HAR)模型的新规范。在此建模框架中,允许使用未指定的函数形式使HAR的系数随时间变化。应用具有交叉验证(CV)带宽选择的局部线性方法来估计时变系数HAR(TVC-HAR)模型,并使用自举方法来构造系数函数的逐点置信带。此外,在某些温和条件下建立了TVC-HAR模型的拟议局部线性估计量的渐近分布。仿真研究结果表明,具有CV带宽选择的局部线性估计器具有良好的有限样本属性。条件预测能力测试的结果表明,在多步样本外预测方面,特别是在后期,拟议的非参数TVC-HAR模型在跳变和/或GARCH方面表现优于参数HAR及其对HAR的扩展。 -2003年危机和2007年GFC期间,金融市场波动过高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号