首页> 外文OA文献 >Extremely Large Magnetic Entropy Changes, Quantum Phases, Transitions and Diagram in Gd(OH)3 Single Crystal Nanowires - Quasi-1D Large Spin (S = -7/2) Chain Antiferromagnet
【2h】

Extremely Large Magnetic Entropy Changes, Quantum Phases, Transitions and Diagram in Gd(OH)3 Single Crystal Nanowires - Quasi-1D Large Spin (S = -7/2) Chain Antiferromagnet

机译:Gd(OH)3单晶纳米线中的极大磁熵变,量子相,跃迁和图 - 准一维大自旋(s = -7 / 2)链反铁磁

摘要

Systematically magnetic and magnetothermal measurements at temperatures down to 2 K and magnetic fields up to 13.5 Tesla for Gd(OH)3 Single Crystal Nanowires - Quasi-1D Large Spin (S = -7/2) Chain Antiferromagnet have been conducted. We find that, (1) magnetic field enhances the thermal and local spin fluctuations which suppress long-range spin ordering (LRO) within the measured temperature range, and close to 0 K at the quantum critical point (QCP); (2) possible field-induced exotic local spin-liquid-like, aligned-spin, and spin-flip exotic paramagnetic phases, and transitions in the low temperature and high field range have been observed, allowing us to identify a possible quantum critical point; (3) there is extremely large, fully reversible MCE (magnetic entropy change (-{Delta}SM) = 27.8, 66, and 88 J / kg K, adiabatic temperature change ({Delta}Tad) = 6.7, 17.6, and 36.4 K at 2.55 K for field changes of 2, 5, and 11 T, respectively in the continuum of quantum phase transitions in this system; (4) moreover, careful experiments and analysis may allow experimental determination and set up a quantum phase diagram of this system. The magnetic-entropy change monotonically increases with decreasing temperature, and it exceeds the magnetocaloric effect (MCE) in any other known low temperature reversible MCE material by at least a factor of 3. The extremely large magnetic entropy change may be attributed to the large amount of weakly interacting spins that can be easily aligned at low-lying energy in the quantum critical regime of our nanosized materials, since there is large MCE in the local spin-liquid-like (low energy excitation and even gapless state) range. These indicate that the material is a promising MCE candidate for low temperature application, and possibly could make ultra-low temperatures easily achievable for most laboratories and for space application as well.
机译:对Gd(OH)3单晶纳米线-准1D大自旋(S = -7/2)链反铁磁体进行了系统磁性和磁热测量,温度低至2 K,磁场低至13.5 Tesla。我们发现,(1)磁场增强了热和局部自旋波动,从而抑制了在测量温度范围内的远距离自旋有序(LRO),并且在量子临界点(QCP)接近0 K; (2)观察到了可能的场感应外来局部自旋状,对准自旋和自旋翻转外来顺磁相,以及在低温和高场范围内的跃迁,使我们能够确定可能的量子临界点; (3)有一个非常大的,完全可逆的MCE(磁熵变(-{ Delta} SM)= 27.8、66和88 J / kg K,绝热温度变化({ Delta} Tad)= 6.7、17.6,在系统中连续2、5和11 T的场变化时,在2.55 K时分别为36.4 K和(36.4 K);(4)此外,仔细的实验​​和分析可能允许实验确定并建立量子相图磁熵变随温度降低而单调增加,并且比任何其他已知的低温可逆MCE材料的磁热效应(MCE)至少高3倍。可能归因于极大的磁熵变。大量弱相互作用的自旋,在我们的纳米级材料的量子临界状态下,可以很容易地在低能量处排列,因为在局部自旋液体状(低能量激发,甚至是无间隙状态)中存在大量MCE范围,这些表示tha这种材料是用于低温应用的有希望的MCE候选材料,并且可能使大多数实验室和太空应用都可以轻松实现超低温。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号